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Abstract
Sequencing of viral infections has become increasingly common over the last decade. Deep sequencing data in 
particular have proven useful in characterizing the roles that genetic drift and natural selection play in shaping 
within-host viral populations. They have also been used to estimate transmission bottleneck sizes from identified 
donor–recipient pairs. These bottleneck sizes quantify the number of viral particles that establish genetic lineages 
in the recipient host and are important to estimate due to their impact on viral evolution. Current approaches for 
estimating bottleneck sizes exclusively consider the subset of viral sites that are observed as polymorphic in the donor 
individual. However, these approaches have the potential to substantially underestimate true transmission bottleneck 
sizes. Here, we present a new statistical approach for instead estimating bottleneck sizes using patterns of viral genetic 
variation that arise de novo within a recipient individual. Specifically, our approach makes use of the number of clonal 
viral variants observed in a transmission pair, defined as the number of viral sites that are monomorphic in both the 
donor and the recipient but carry different alleles. We first test our approach on a simulated dataset and then apply it 
to both influenza A virus sequence data and SARS-CoV-2 sequence data from identified transmission pairs. Our results 
confirm the existence of extremely tight transmission bottlenecks for these 2 respiratory viruses.
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Introduction
In viral infections, transmission bottleneck sizes are defined 
as the number of viral particles transmitted from a donor 
to a recipient host that successfully establish genetic lineages 
within the recipient. Quantifying the magnitude of these 
bottlenecks is important for understanding the ecological 
and evolutionary dynamics of viruses at multiple scales, as 
these bottlenecks bridge processes occurring at within-host 
and between-host levels (Zwart and Elena 2015; McCrone 
and Lauring 2018). At the level of the population, tight trans
mission bottlenecks can act to slow down the rate of viral 
adaptation, as beneficial mutations that arise within a donor 
host can be lost during transmission to a recipient host (Abel 
et al. 2015; Zaraket et al. 2015; Zwart and Elena 2015; 
Geoghegan et al. 2016). However, they may also be advanta
geous to a viral population, for example by enabling its path 
through a rugged fitness landscape and by purging cheaters 
from its population (Zwart and Elena 2015). At the within- 
host level, tight transmission bottlenecks lead to lower levels 
of viral genetic diversity in recipient hosts and genetic drift 
playing an important role in shaping the viral population 

during the early stages of a recipient’s infection (Gutiérrez 
et al. 2012; Abel et al. 2015; Zwart and Elena 2015; 
McCrone and Lauring 2018; McCrone et al. 2018). Finally, 
quantifying transmission bottleneck sizes is important for 
more applied reasons: having estimates of the bottleneck 
size may help determine whether it is possible to reconstruct 
who-infected-whom in an outbreak setting and will deter
mine which inference methods might be the most suitable 
to use in a specific application (Hall et al. 2016; Campbell 
et al. 2018; Duault et al. 2022).

Several statistical methods have recently been developed 
to estimate transmission bottleneck sizes from viral deep- 
sequencing data (Emmett et al. 2015; Zwart and Elena 
2015; Sobel Leonard et al. 2017b; Ghafari et al. 2020). All of 
these approaches rely on patterns of shared genetic variation 
by first characterizing the genetic variation that is present in 
both the donor and the recipient of an identified transmis
sion pair. They then restrict their analyses to the subset of 
sites that are polymorphic in the donor. One approach 
(the presence/absence method) estimates bottleneck sizes 
by asking which of the variants identified in the donor are 
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also detected in the recipient and which are not. A second 
approach (the binomial sampling method) instead makes 
use of variant frequencies quantified in the recipient, rather 
than just their presence or absence. However, it assumes that 
the observed differences in variant frequencies between a 
donor and a recipient arise from the process of viral sampling 
alone (Emmett et al. 2015; Poon et al. 2016). A third ap
proach (the betabinomial sampling method) similarly makes 
use of variant frequencies from the recipient but additionally 
accounts for deviations between donor and recipient variant 
frequencies that arise from demographic noise during the 
early period of exponential viral growth in the recipient 
(Sobel Leonard et al. 2017b). Finally, a haplotype-based ap
proach to transmission bottleneck size estimation has 
been developed (Ghafari et al. 2020); it extends the betabino
mial sampling method to account for genetic linkage be
tween loci.

Applications of these inference methods to viral sequence 
data have indicated that transmission bottlenecks are tight for 
many viral pathogens. Several studies have estimated bottle
neck sizes of 1–3 viral particles for plant viruses (Moury 
et al. 2007; Betancourt et al. 2008; Sacristán et al. 2011). 
Tight transmission bottlenecks of 1–5 viral particles have 
also been estimated for human viruses, including influenza 
viruses (McCrone et al. 2018; Valesano et al. 2020), HIV-1 
(Keele et al. 2008), and most recently SARS-CoV-2 (Braun 
et al. 2021a, 2021b; Lythgoe et al. 2021; Martin and Koelle 
2021; Nicholson et al. 2021; Wang et al. 2021; Li et al. 2022; 
Bendall et al. 2023). When bottlenecks are tight, as in these 
cases, there is little genetic diversity that is transferred from 
a donor to a recipient. For acute infections, with little time 
to accrue new mutations, this often times leads to overall 
low levels of viral diversity in infected hosts. When there is 
no viral genetic diversity observed in a donor sample, estima
tion of transmission bottleneck size is not possible for that 
transmission pair. Studies that estimate bottleneck sizes 
(such as the ones cited above) therefore often rely on combin
ing data from across a large number of transmission pairs to 
quantify an average bottleneck size. Within experimental set
tings, barcoded viruses can be used to increase host genetic 
diversity and thereby to improve resolution of transmission 
bottleneck sizes (Varble et al. 2014; Amato et al. 2022). 
However, natural settings do not afford us with this possibility.

Three issues need to be considered when interpreting 
bottleneck size estimates derived from inference methods 
that rely on patterns of shared genetic variation. One issue 
is that the time of the infectious contact is not known in 
many cases, and the donor is unlikely to be sampled exact
ly at the point of transmission. Longitudinal studies of 
acute infections have indicated that variant frequencies 
can change rapidly over the course of infection, with 
many variants that are observed on one day not being ob
served on an adjacent day (McCrone et al. 2018; Popa et al. 
2020; Valesano et al. 2020). These rapid variant frequency 
changes in the donor will act to considerably depress in
ferred bottleneck size estimates, as the assumed allele fre
quencies at the time of transmission will deviate from the 
true ones. A second issue is that rapid variant frequency 

changes in the recipient will similarly act to depress in
ferred bottleneck size estimates, as transmitted genetic 
variation could be lost in the recipient even when viral ti
ters are high. The extent of shared genetic variation be
tween a donor and a recipient may therefore be more 
indicative of the extent of viral genetic drift within individ
ual infections than the size of the transmission bottleneck. 
A third issue is that existing methods all assume that viral 
particles that initiate infection in the recipient are ran
domly sampled from the donor. However, it could be 
the case that genetically similar virions are aggregated 
and transmit together, as would be the case with collective 
infectious units (Sanjuán 2017). If this is the case, one 
would again erroneously infer bottleneck sizes to be tight 
when they might in fact be loose.

Here, we develop an approach for estimating transmission 
bottleneck sizes that instead makes use of de novo genetic 
variation that is observed in a recipient. Similar to some exist
ing approaches, it assumes that all observed genetic variation 
is neutral and that the viral population in the recipient host 
undergoes stochastic exponential growth. It differs from exist
ing approaches, however, in that it uses a different subset of 
sites for inference, namely sites that are monomorphic in 
both the donor and recipient but carry different alleles. 
Consideration of these sites, rather than sites that are poly
morphic in the donor, circumvents the 3 issues described 
above. To introduce our approach, we first describe the sto
chastic model that we assume underlies the process of viral 
population expansion in a recipient. We then describe the in
ference framework and test our approach on simulated data, 
showing that it accurately recovers transmission bottleneck 
sizes. Finally, we apply our approach to data from influenza 
A virus (IAV) and SARS-CoV-2 transmission pairs, confirming 
previous findings of tight transmission bottlenecks for these 
respiratory viruses using an approach that is not prone to 
underestimating this quantity.

Materials and Methods
The Stochastic Within-Host Model
We model the dynamics of the viral population within a re
cipient using a multitype branching process model. The types 
in this model correspond to different viral genotypes. Because 
we assume that all mutations are neutral, each type has the 
same overall offspring distribution. More specifically, we as
sume a geometric offspring distribution, consistent with 
the offspring distribution under a stochastic birth–death 
model. The geometric distribution is parameterized with a 
success probability of pgeom, where pgeom = 1/(R0 + 1) and 
R0 is the within-host basic reproduction number. As such, 
the expected number of offspring a given viral particle leaves 
is given by R0. The number of mutations that occur during 
the production of a viral offspring is assumed to be 
Poisson-distributed with mean μ. When one or more muta
tions occur during the production of an offspring, the result
ant offspring becomes a new type. As such, we assume 
infinite sites. In addition to carrying any new mutations, 
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offspring inherit the mutations of their parent. Because we 
model the virus population as asexually reproducing, genetic 
linkage across the virus genome is assumed to be complete. 
Because we are interested in characterizing transmission 
dynamics between infections, we consider only the supercrit
ical case corresponding to a within-host basic reproduction 
number of R0 > 1.

The virus population starts with an initial population 
size of N viral particles, which stem from the donor’s virus 
population. N is related, but not equivalent, to the trans
mission bottleneck size Nb. This is because Nb quantifies 
the number of viral particles that succeed in establishing 
a genetic lineage in the recipient and some of the N initial 
viral particles may have lineages that do not successfully 
establish but instead go stochastically extinct. As such 
Nb ≤ N. All N initial viral particles harbor 0 de novo muta
tions, where we define de novo mutations as mutations 
that occurred during viral replication in the recipient. 
These N initial viral particles could in principle be genetic
ally distinct from one another. Any genetic variation that is 
present in these particles stems from the donor. Hereafter, 
we refer to viral particles without de novo mutations (in
cluding these N initial viral particles) as wild-type particles, 
while remaining cognizant that these could differ from one 
another genetically. We further define a wild-type lineage 

as a genetic lineage that starts from an initial wild-type 
particle and includes the subset of offspring that are wild- 
type. Finally, we define a mutant lineage as a lineage that 
starts from a viral particle that is an immediate descendant 
of a wild-type particle and carries one or more mutations 
relative to that wild-type parent.

We can lay out all of the possible dynamic outcomes of 
this branching process model. The first possible outcome is 
that the virus population in the recipient goes stochastic
ally extinct (Fig. 1a). This would result in the recipient re
maining uninfected and (necessarily, but trivially) 0 
mutant lineages successfully establishing in the recipient. 
The second possible outcome is that at least one of the 
N initial viral particles seeds a wild-type lineage that suc
cessfully establishes (Fig. 1b). In this case, there will theor
etically be an infinite number of mutant lineages that will 
successfully establish. This is because under a supercritical 
branching process the wild-type viral population will ul
timately grow geometrically at a per generation rate of 
R0 e−μ, and each of the wild-type viral particles in this ever- 
growing population may give rise to a mutant lineage that 
will also establish in the viral population. In reality, viral 
population sizes will expand and then decline in an acute 
infection, such that there will be many, but not an infinite 
number of mutant viral lineages that establish initially, 

a

c d

eb

Fig. 1. Possible dynamic outcomes in the recipient. a) The viral population in the recipient may go stochastically extinct, leading to no infection 
in the recipient. b) One or more wild-type lineages may successfully establish. c) No wild-type lineages establish but a single mutant lineage 
successfully establishes. d) No wild-type lineages establish but 2 or more mutant lineages successfully establish. Here, we show a scenario of 
2 mutant lineages successfully establishing. Outcomes (b–d) result in successful infection of the recipient. Wild-type particles are shown in white. 
Mutant lineages are shown in different colors. In (a–d), N = 2 initial viral particles and Sl denotes the number of mutant lineages l that success
fully establish under each scenario. e) Summary of possible dynamic outcomes, with Sl again denoting the number of mutant lineages l that 
establish. Outcomes are color-coded by the number of clonal variants k that would be observed under the outcome. The portion of the outcome 
space labeled PX denotes the probability that the viral population in the recipient goes extinct. The portion of the outcome space labeled 
P0 denotes the probability that k = 0 clonal variants establish in the recipient’s viral population. The portion of the outcome space labeled 
P1+ denotes the probability that at least 1 clonal variant establishes in the recipient’s viral population.
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only to die out toward later stages of an infection. The 
third possible outcome is that no wild-type viral lineages 
establish but a single mutant lineage, seeded by a wild-type 
viral particle, establishes (Fig. 1c). Finally, the fourth pos
sible outcome is that no wild-type viral lineages establish 
but 2 or more mutant lineages establish (Fig. 1d). In the 
case of a successful infection (Fig. 1b–d), the overall viral 
population will grow geometrically at rate R0 once 
the population has reached a large size. Again, in reality, 
viral population sizes in an acute infection will increase 
and then decrease. Successful sequencing of a viral sample 
from a recipient, however, will occur when viral titers are 
still relatively high.

For a given outcome, we can quantify the number of 
variants that arose and fixed in the viral population of 
the recipient. We refer to these variants as clonal variants. 
In the case of the viral population going extinct (the first 
outcome; Fig. 1a), the infection in the recipient did not es
tablish and we will not have observed this outcome in a 
transmission pair. We refer to the probability of this out
come as PX . In the case of one or more of the wild-type viral 
lineages establishing (the second outcome; Fig. 1b), the 
number of clonal variants will be 0, because none of the 
mutations that arose in any of the mutant lineages will 
fix. In the case of no wild-type viral lineages establishing 
but 2 or more mutant lineages successfully establishing 
(the fourth outcome; Fig. 1d), the number of clonal var
iants will similarly be 0, because none of the mutations 
that arose in any of the mutant lineages will fix under an 
infinite sites assumption. Finally, in the case of no wild-type 
viral lineages establishing but exactly one mutant lineage 
successfully establishing (the third outcome; Fig. 1c), the 
number of clonal variants will be at least one. It will 
be exactly one if only a single mutation occurred during 
the generation of the mutant lineage and no additional 
clonal variants arose in this mutant lineage. It will be great
er than one if more than one mutation occurred during 
the generation of the mutant lineage and/or if additional 
mutations occurred in this mutant lineage that ultimately 
fixed. Figure 1e graphically summarizes all of these possible 
dynamic outcomes.

Derivation of the Probability Distribution for the 
Number of Clonal Variants
The multitype branching process model, resulting in the 
different possible outcomes shown in Fig. 1, contains 3 
parameters: the initial wild-type viral population size N, 
the within-host basic reproduction number R0, and the 
per genome, per infection cycle mutation rate μ. Here, 
we are specifically interested in estimating the initial viral 
population size N. Estimates of N will be used to calculate 
the transmission bottleneck size Nb. To estimate N, we 
need to ask: for a given recipient harboring k clonal var
iants, what is the likelihood that the initial viral population 
size was N = 1, 2, 3, . . .? These likelihoods can be calcu
lated if we can calculate the probability distribution for a 
recipient harboring k = 0, 1, 2, . . . clonal variants, for 

given values of N, R0, and μ. In the Supplementary 
Material, we derive the expression for this probability dis
tribution based on the different possible dynamic out
comes shown in Fig. 1e, with associated supplementary 
fig. S1, Supplementary Material online graphically depict
ing the steps involved in this derivation.

We can confirm the accuracy of our analytical results in 
2 ways. First, previous work by Bozic et al. (2016), in the 
context of cancer cell dynamics, derived an equation for 
the number of clonal variants one would expect in a popu
lation undergoing birth–death dynamics, given an initial 
population size of N = 1. This expected number is given 
by δu/(1 − δ), where their parameter δ corresponds to 
1/R0 and their mutation parameter u corresponds to 
our μ, under the assumption that μ is small (≪ 1). 
Figure 2a shows the expected number of clonal variants 
across a range of within-host R0 and across a range of mu
tation rates μ, as calculated from their equation. In Fig. 2b, 
we plot the expected number of clonal variants as given by 
our analytical results under the assumption of N = 1. The 
quantitative similarity of the plots shown in Fig. 2a and b
demonstrates the accuracy of our clonal variant deriv
ation. In the Supplementary Material, we further show 
how we can derive their equation using our analytical ex
pressions, under the assumption of a low mutation rate.

The second way we can check our analytical results is 
through extensive numerical simulation of the branching 
process model. For a given simulation, we can determine 
whether the viral population went stochastically extinct 
or whether infection was successful. For those simulations 
establishing successful infection, we can determine the 
number of clonal variants that evolved. To check our clo
nal variant derivation, we plot in Fig. 2c the fraction of si
mulations that resulted in k = 0, 1, 2, . . . clonal variants 
from 4,000 simulations that were each parameterized 
with an initial viral population size of N = 2, a within-host 
basic reproduction number of R0 = 1.2, and a per genome 
per infection cycle mutation rate of μ = 0.2. Alongside this 
empirical distribution, we plot the analytically derived clo
nal variant probabilities under this parameterization. The 
quantitative similarity of these distributions demonstrates 
the accuracy of our analytical derivations.

Results
Application to Simulated Data
Before applying our statistical method to sequence data 
from empirical transmission pair studies, we first applied 
our approach to simulated (mock) data. To this end, we 
forward simulated the branching process model until we 
obtained 100 successful recipient infections. Forward si
mulations were all performed with a within-host basic re
production number of R0 = 1.6 and a per genome, per 
infection cycle mutation rate of μ = 0.4. Instead of assum
ing that the initial viral population size N was the same 
across all recipients, we assumed that the initial number 
of viral particles was Poisson-distributed with mean 
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λ = 2.1 (Fig. 3a). (Simulations with a higher N had a lower 
chance of going stochastically extinct so higher N simula
tions were overrepresented in the mock dataset, which we 
account for, as described in greater detail below.)

For each of these 100 simulated successful infections, we 
calculated the number of clonal variants present in the re
cipient viral population once large. Figure 3b shows the 
proportion of these 100 simulations that resulted in k = 
0, 1, 2, . . . clonal variants. We then set R0 to its true value 
of 1.6 and attempted to jointly estimate λ and μ from this 
observed mock dataset. To do this, we first calculated 
across combinations of N and μ the probability of observ
ing k = 0 clonal variants (Fig. 3c), k = 1 clonal variant 
(Fig. 3d), k = 2 clonal variants (Fig. 3e), k = 3 clonal var
iants (not shown), k = 5 clonal variants (not shown), and 
k = 7 clonal variants (not shown). We did not perform 
the calculation for other values of k because there were 
no simulated infections that resulted in these other num
bers of clonal variants.

From the mock dataset shown in Fig. 3b, our goal was 
then to estimate λ and μ given knowledge of the within- 
host basic reproduction number R0. To do this, we first ad
justed the Poisson distribution shown in Fig. 3a (dark green 
bars) to reflect the distribution of initial viral population 
sizes we would expect across successful infections 
(Fig. 3a, light green bars). This adjustment involved multi
plying the Poisson probability masses by the N-specific 
probabilities of successful establishment (1 − (1/R0)N) 
and renormalizing. For a given transmission pair, the prob
ability that a recipient’s viral population harbors k clonal 
variants is then given by

Prob(k ∣ λ, μ, R0) =
􏽘∞

N=0

pN(λ)ρk(N, μ, R0), (1) 

where pN(λ) is the probability that N viral particles started 
off a successful viral infection under an assumed Poisson 

distribution with mean λ (Fig. 3a, light green bars) and 
ρk(N, μ, R0) is the probability that the recipient’s viral 
population harbors k clonal variants. We can calculate 
this probability for each of the 100 transmission pairs in 
our mock dataset, and then calculate the overall 
log-likelihood of observing the data shown in Fig. 3b
(dark green bars) by summing the log of these probabil
ities. In Fig. 3f, we plot this log-likelihood surface over a 
broad range of λ values and μ values, while setting the 
within-host basic reproduction number R0 to its true value 
of 1.6. The estimated values of μ and λ are very close to 
their true values and the 95% confidence intervals include 
the true value. As such, these results indicate that our in
ference approach performs well on this simulated dataset 
of 100 transmission pairs.

In addition to plotting the log-likelihood landscape as a 
function of λ and μ, we can plot the same results as a func
tion of the mean realized initial viral population size N̅ and μ 
(Fig. 3g). The mean realized initial viral population size quan
tifies the mean number of initial viral particles across suc
cessful infections and as such corresponds to the mean of 
the adjusted Poisson distribution shown in Fig. 3a (light 
green bars). The mean initial viral population size is given by

N̅ =
􏽘∞

N=0

NpN(λ). (2) 

Similarly, we can plot the log-likelihood landscape as a func
tion of the mean transmission bottleneck size N̅b and μ 
(Fig. 3h). The expression for the mean transmission bottle
neck size is provided in the Supplementary Material. The 
mean transmission bottleneck size quantifies the mean 
number of initial viral particles that successfully establish 
genetic lineages in the recipient host.

Finally, we can use our maximum likelihood estimates of λ 
and μ to generate the predicted probability distribution for 
the number of clonal variants observed. We generate this 

a b c

Fig. 2. Confirmation of our analytical results. a) The expected number of clonal mutations when N = 1, as derived by Bozic et al. (2016) using a 
birth–death model. Mean numbers of clonal mutations are shown across a range of within-host R0 and μ parameter values. b) The mean number 
of clonal mutations, as calculated from our analytical expressions, parameterized with N = 1. c) Histogram showing the proportion of simula
tions that resulted in k = 0, 1, 2, . . . clonal variants (dark green), alongside our analytical predictions (light green). Simulated proportions were 
calculated using 4,000 stochastic simulations that resulted in successful infection. Simulations and analytical results shown in panel c were para
meterized with N = 2, R0 = 1.2, and μ = 0.2.
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a b

c d e

f g h

i j k

Fig. 3. Application of our inference method to a mock dataset of 100 transmission pairs. a) Poisson probability distribution showing the distri
bution of initial viral population sizes N that seed potential recipient infections (dark green bars). Here, the mean of this Poisson distribution is 
λ = 2.1. The probability distribution of the initial viral population size being N, conditional on successful infection, is also shown (light green 
bars). b) Proportion of simulated infections that resulted in k = 0, 1, 2, . . . clonal variants (dark green bars). Of the 100 simulated infections, 
78 recipients had no clonal variants, 12 recipients had 1 clonal variant, 7 recipients had 2 clonal variants, 1 recipient had 3 clonal variants, 
1 recipient had 5 clonal variants and 1 recipient had 7 clonal variants. Alongside the simulated (observed) data, we show the proportion of 
infections with k = 0, 1, 2, . . . clonal variants that we estimated using maximum likelihood values λ = 2.3 and μ = 0.39 (light green bars). 
c) Probabilities of observing k = 0 clonal variants across a range of N and μ values. d) Probabilities of observing k = 1 clonal variant across a 
range of N and μ values. e) Probabilities of observing k = 2 clonal variants across a range of N and μ values. f) Log-likelihood plot, showing 
the log(probability) of observing the mock dataset given parameters λ and μ. Black lines show the true values of λ and μ. Dashed red lines 
show the maximum likelihood values of λ and μ. g) Log-likelihood plot, as in panel f, with the results plotted as a function of N̅ and μ. 
h) Log-likelihood plot, as in panel f, with the results plotted as a function of N̅b and μ. In f–h), R0 was set to its true value of 1.6. 
i) Log-likelihood plot, showing the log(probability) of observing the mock dataset given parameters λ and R0. Black lines show the true values 
of λ and R0. Dashed red lines show the maximum likelihood values of λ and R0. j) Log-likelihood plot, as in panel i, with the results plotted as a 
function of N̅ and R0. k) Log-likelihood plot, as in panel i, with the results plotted as a function of N̅b and R0. In i–k), the mutation rate was set to 
its true value of 0.4 mutations per genome per infection cycle. In f–k), log-likelihood values are shown only for the parameter combinations that 
fall within the 95% confidence region.
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estimated distribution using equation (1). Figure 3b shows 
this estimated distribution (light green bars) alongside the 
distribution from the simulated dataset (dark green bars). 
These distributions are quantitatively similar, indicating 
that our model, as parameterized, can recover the distribu
tion of clonal variant outcomes observed in the mock dataset.

In the above analysis, we fixed R0 at its true value of 1.6 and 
jointly estimated μ and λ. In a specific application to data, it 
might be the case that a literature estimate exists for μ but 
not the within-host basic reproduction number. We there
fore assessed whether we could accurately infer within-host 
R0 alongside λ while fixing μ at its true value of 0.4 mutations 
per genome per infection cycle. We found that our maximum 
likelihood estimates of R0 and λ were again very close to their 
true values and that the true values of R0 and λ again fell with
in our 95% confidence interval. However, the 95% confidence 
interval of λ, our primary parameter of interest, was consider
ably broader than when we set R0 to its true value and jointly 
estimated μ and λ (Fig. 3i). Figure 3j and k, respectively, show 
these results as a function of N̅ and N̅b instead of λ.

Finally, we asked whether it would be possible to jointly es
timate λ, μ, and R0 based on the number of observed clonal 
variants across the mock dataset of transmission pairs. 
Supplementary figure S2A–C, Supplementary Material online 
shows the profile likelihoods for λ, R0, and μ, respectively, over 
broad ranges. The profile likelihoods are remarkably flat, with 
the 95% confidence intervals on each of these parameters 
spanning across the shown ranges. These flat likelihood 
curves indicate that there are identifiability issues that arise 
when trying to jointly estimate all 3 of these parameters. To 
better understand why this is the case, we jointly estimated 
μ and λ while setting the within-host R0 to different values: 
1.3 (supplementary fig. S2D, Supplementary Material
online), 1.6 (the true value; supplementary fig. S2E, 
Supplementary Material online), and 3 (supplementary fig. 
S2F, Supplementary Material online). While the maximum 
likelihood values across these 3 panels are very similar, the 
maximum likelihood estimates for (λ, μ) transition from a 
high λ, low μ combination at low R0 to a low λ, high μ com
bination at high R0. These results make sense in that a low 
R0 results in a higher mean number of clonal variants 
(Fig. 2a and b). For a specific dataset, this leads to lower μ 
values and higher λ values, both of which tend to decrease 
the number of clonal variants observed. Analogously, a high 
R0 results in a lower mean number of clonal variants 
(Fig. 2a and b). For a specific dataset, this leads to higher μ va
lues and lower λ values, both of which tend to increase the 
number of clonal variants observed. Taken together, the re
sults in supplementary fig. S2, Supplementary Material online 
therefore indicate that either the mutation rate or the within- 
host R0 needs to be set to a reasonable value based on litera
ture estimates to be able to make informative inferences 
about transmission bottleneck sizes using this approach.

Application to Empirical Data
We apply our inference approach to 2 acutely infecting 
respiratory viruses: seasonal IAV and SARS-CoV-2. 

Application of our approach to an empirical dataset works 
analogously to the application of our approach to a simu
lated dataset. The only additional step involves the identi
fication of clonal variants using virus deep-sequencing data 
from donor–recipient transmission pairs. Below, we use 
transmission pairs that have been previously identified 
using a combination of epidemiological, clinical, and viral 
genetic criteria. We identify clonal variants in these 
already-established transmission pairs by first setting a 
variant-calling threshold (e.g. 3%). We then call intrahost 
single nucleotide variants (iSNVs) for the donor sample 
and for the recipient sample based on this threshold. All 
sites that harbor an iSNV in either the donor or the recipi
ent are then removed from consideration, as they are poly
morphic in at least one of these individuals. At the 
remaining sites, we determine which allele is present in 
both the donor and the recipient. Any site that carries a 
different allele in the recipient compared to the donor is 
then called as a clonal variant.

Application to IAV
As the first empirical application of our inference approach, 
we considered a rich IAV dataset from a prospective 
community-based cohort study (McCrone et al. 2018). 
The relevant portion of this dataset are 52 transmission pairs 
that were identified as part of this study (Supplementary 
Material). For each of these transmission pairs, we calculated 
the number of clonal variants observed in the recipient using 
a variant-calling threshold of 3%. The data consisted of 42 
transmission pairs with 0 clonal variants, 5 transmission pairs 
with 1 clonal variant, 2 transmission pairs with 2 clonal var
iants, 3 transmission pairs with 3 clonal variants, and 0 trans
mission pairs with 4 or more clonal variants (Fig. 4a). We set 
the within-host basic reproduction number R0 to 11.1, based 
on a quantitative analysis of IAV dynamics in longitudinally 
studied human IAV infections (Baccam et al. 2006). We con
sidered λ values in the range of (0, 4] mean initial viral parti
cles and μ values between 0 and 3.5 mutations per genome 
per infection cycle. In practice, we considered a range in λ 
from 0.01 to 4 mean initial viral particles and then also eval
uated the limit as λ approached 0 by calculating the likeli
hood with N = 1 initial viral particles.

Figure 4b shows the log-likelihood surface for λ and μ. 
Figure 4c and d plots these same results as a function of 
N̅ and N̅b, respectively. The log-likelihood surface shown 
in Fig. 4d corroborates previous results of very tight trans
mission bottlenecks for IAV (McCrone et al. 2018). Indeed, 
the maximum likelihood estimate of λ→ 0 indicates that 
almost all successful transmissions are predicted to have 
started with a single initial viral particle (N = 1). Our re
sults further provide an estimate of the mutation rate 
that is consistent with an independent mutation rate esti
mate obtained using a twelve class fluctuation test (Pauly 
et al. 2017). Specifically, the fluctuation test estimated the 
occurrence of 2 to 3 mutations on average per replicated 
genome. With approximately 30% of IAV mutations esti
mated to be lethal deleterious (Visher et al. 2016), we 
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expect based on these results that μ be approximately 
(2 − 3) × 0.70 = 1.4 − 2.1 mutations per replicated gen
ome, consistent with our findings in Fig. 4b–d. Finally, 
we used our maximum likelihood estimates of λ and μ 
to generate the predicted probability distribution for the 
number of clonal variants observed. Figure 4a shows this 
predicted distribution alongside the distribution from 
the empirical IAV dataset. Although the predicted and em
pirical distributions are quantitatively similar, we note that 
our model, parameterized with maximum likelihood par
ameter values, appears to overestimate the proportion of 
clonal variants in the k = 0 class and underestimate the 
proportion of clonal variants in higher-k classes.

Because our findings depend on our assumption of R0, 
we reapplied our inference approach across a broader 
range of reasonable R0 values. Supplementary figure S3, 
Supplementary Material online provides a sensitivity ana
lysis of our λ and μ estimates under a range of R0 = 4.4 
to 37.7, corresponding to the minimum and maximum 
R0 estimates in Baccam et al. (2006). This analysis indicates 
that our estimates are relatively insensitive to the exact 
value of R0 assumed. Across the range of R0 values consid
ered, the maximum likelihood estimates of λ and asso
ciated mean transmission bottleneck sizes N̅b remained 

low. The maximum likelihood estimates of the mutation 
rate also remained at similar values, with a slightly lower 
mutation rate estimated when R0 was assumed to be 
low compared to when it was assumed to be high. Of 
note, the overestimation of the probability mass in the 
k = 0 class (and the underestimation of the probability 
masses in the k ≥ 1 classes) is less stark at lower R0 values, 
indicating that literature estimates of within-host R0 
values may be high.

Because our sensitivity analyses indicate that the clonal 
variant data may support an R0 value that is lower than 
current literature estimates, we decided to perform an 
additional analysis where we set the mutation rate and at
tempted to instead jointly estimate λ and the within-host 
basic reproduction number R0 (supplementary fig. S4A–D, 
Supplementary Material online). With this analysis, we 
found that the maximum likelihood estimate for within- 
host IAV R0 was 5.01, while the maximum likelihood 
estimate for λ remained at λ→ 0, corresponding to all 
successful transmissions starting off with a single initial vir
al particle (N = 1). The maximum likelihood estimate 
of within-host R0 = 5.01 is low compared to the range of 
individual estimates given in Baccam et al. (2006), al
though one of the 6 individuals studied in that analysis 

a b c d

e f g h

Fig. 4. Application of our inference method to IAV and SARS-CoV-2 transmission pairs. Top row shows IAV results. Bottom row shows 
SARS-CoV-2 results. a) Distribution of the number of clonal variants observed across the 52 identified IAV transmission pairs (dark green 
bars). The expected distribution under the maximum likelihood estimates of λ and μ (light green bars) is shown alongside the empirical distri
bution. b) Log-likelihood plot, showing the log(probability) of observing the IAV dataset across a range of λ and μ values. Dashed red lines show 
the maximum likelihood values for λ and μ. The value of λ→ 0 was evaluated by assuming that 100% of successful transmissions started off with 
N = 1 initial viral particles. c) Log-likelihood plot, as in panel b, with the results plotted as a function of N̅ and μ instead of λ and μ. 
d) Log-likelihood plot, as in panel b, with the results plotted as a function of N̅b and μ instead of λ and μ. The 95% confidence region of N̅b 
spanned the range [1.00, 1.41]. e) Distribution of the number of clonal variants observed across the 39 identified SARS-CoV-2 transmission pairs 
(dark green bars). The expected distribution under the maximum likelihood estimates of λ and μ (light green bars) is shown alongside the em
pirical distribution. f) Log-likelihood plot, showing the log(probability) of observing the SARS-CoV-2 dataset across a range of λ and μ values. 
g) Log-likelihood plot, as in panel f, with the results plotted as a function of N̅ and μ instead of λ and μ. h) Log-likelihood plot, as in panel f, with 
the results plotted as a function of N̅b and μ instead of λ and μ. The 95% confidence region of N̅b spanned the range [1.00, 2.31]. In panels b–d 
and f–h, only the log-likelihood values that fall within the 95% confidence region are shown.
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had an R0 estimate lower than 5.01. As an additional 
consideration, the within-host R0 we estimated in 
supplementary fig. S4, Supplementary Material online re
flects the value of this parameter very early on during 
the infection process, while the within-host R0 estimated 
in Baccam et al. (2006) is based on the exponential growth 
rate of the viral population once viral titers are sufficiently 
high to be detected with nasal washes. Due to changes 
in cellular multiplicities of infection over this period, and 
the effect this would have on viral complementation and 
competition, it might be the case that these within-host 
R0 values are not immediately comparable.

Application to SARS-CoV-2
Next, we applied our inference approach to a previously 
published SARS-CoV-2 transmission pair dataset from 
Austria (Popa et al. 2020). This dataset included 39 identi
fied transmission pairs from early on in the SARS-CoV-2 
pandemic (Supplementary Material). Based on shared gen
etic variation between donors and recipients, transmission 
bottlenecks sizes were estimated to be tight (Martin and 
Koelle 2021; Nicholson et al. 2021), on the order of 1–3 vir
al particles. Here, we reanalyzed these same transmission 
pairs using our new inference approach, again using a 
variant-calling threshold of 3%. The data consisted of 35 
transmission pairs with 0 clonal variants, 4 transmission 
pairs with 1 clonal variant, and 0 transmission pairs with 
2 or more clonal variants (Fig. 4e). We set the within-host 
basic reproduction number R0 to 7.4, based on a quantita
tive analysis of SARS-CoV-2 dynamics in longitudinally 
studied human SARS-CoV-2 infections (Ke et al. 2021). 
We again considered λ values in the range of (0, 4] initial 
viral particles and μ values between 0 and 3.5 mutations 
per genome per infection cycle.

Figure 4f shows the log-likelihood surface for λ and μ. 
Figure 4g and h plots these same results as a function of 
N̅ and N̅b, respectively. The log-likelihood surface shown 
in Fig. 4h corroborates previous results of very tight trans
mission bottlenecks for SARS-CoV-2 (Braun et al. 2021b; 
Lythgoe et al. 2021; Martin and Koelle 2021; Nicholson 
et al. 2021; Bendall et al. 2023). It further provides an esti
mate of the mutation rate that is largely consistent with an 
independent mutation rate estimate of 1 − 5 × 10−6 per 
site per infection cycle (Amicone et al. 2022). This estimate 
translates to a mutation rate of approximately 0.03 to 0.15 
mutations per genome per infection cycle. Again, with ap
proximately 30% of these mutations likely being lethal 
deleterious, we expect μ to be approximately 0.02 to 
0.10 mutations per infection cycle. While our maximum 
likelihood estimate of μ = 0.52 exceeds this estimated 
range, our 95% confidence interval on μ extends into 
this range. Finally, we used our maximum likelihood esti
mates of λ and μ to again generate the predicted probabil
ity distribution for the number of clonal variants observed. 
Figure 4e shows this predicted distribution alongside 
the distribution from the empirical SARS-CoV-2 dataset. 
We again note that while the predicted and estimated 

distributions are quantitatively similar, our maximum like
lihood parameter estimates appear to overestimate the 
proportion of clonal variants in the k = 0 class, and under
estimate the proportion of clonal variants in higher-k 
classes.

To determine the sensitivity of our findings to our as
sumption of R0 = 7.4, we again reapplied our inference ap
proach across a broader range of reasonable R0 values. 
Supplementary figure S5, Supplementary Material online 
shows our results under a range of R0 values that span 
2.6 to 14.9, corresponding to the minimum and maximum 
R0 estimates in Ke et al. (2021). Our results again indicate 
that our estimates are relatively insensitive to the exact va
lue of R0 assumed. As was the case with our IAV analysis, 
estimates of μ were slightly higher at higher within-host 
R0 values. Again, the overestimation of the probability 
mass in the k = 0 class (and the underestimation of the 
probability masses in the k ≥ 1 classes) is reduced at lower 
R0 values, again indicating that literature estimates of 
within-host R0 values may be high.

As we did for the IAV dataset, we then again considered 
an alternative analysis where we set the mutation rate to an 
estimate from the literature and attempted to instead 
jointly estimate λ and the within-host basic reproduction 
number R0 (supplementary fig. S4E–H, Supplementary 
Material online). With this analysis, we found that the max
imum likelihood estimate for within-host SARS-CoV-2 
R0 was 1.21, while the maximum likelihood estimate for λ 
remained at λ→ 0.

Guarding Against the Erroneous Calling of Clonal 
Variants
In our application to empirical data, our findings will de
pend not only on the assumed value of R0 but also on 
the variant-calling threshold used. In particular, a lower 
variant-calling threshold has the potential to reduce the 
number of clonal variants called. This would occur if a 
site (in either the donor, the recipient, or both) goes 
from being called a clonal variant at a higher variant-calling 
threshold to being excluded from consideration at a lower 
variant-calling threshold because this former clonal variant 
is now instead called as an iSNV in one or both individuals. 
This brings us to the question of which variant-calling 
threshold should be used and how we can best guard 
against the erroneous calling of clonal variants when 
they might be transmitted from a donor instead of arising 
de novo in a recipient host. Here, we provide several ap
proaches that can be used to address these concerns 
and to thereby assess the robustness of our conclusions.

The first approach is simply to perform a sensitivity ana
lysis that uses different variant-calling thresholds to calculate 
the number of clonal variants in each of the identified trans
mission pairs. To provide an example of this approach, we re
called clonal variants for the IAV and SARS-CoV-2 datasets at 
variant-calling thresholds of 0.5% and 7% (supplementary 
figs. S6 and S7, Supplementary Material online). As antici
pated, the number of clonal variants observed was lower at 
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the 0.5% variant-calling threshold than at the 3% threshold 
and the number of clonal variants observed was higher at 
the 7% variant-calling threshold than at the 3% threshold. 
This was the case for both datasets. For the IAV dataset, 
neither the maximum likelihood estimate for μ nor the max
imum likelihood estimate for λ was sensitive to the specific 
variant-calling threshold used. Furthermore, the 95% confi
dence interval did not change dramatically across the thresh
olds evaluated (supplementary fig. S6, Supplementary 
Material online). For the SARS-CoV-2 dataset, neither the 
maximum likelihood estimate for μ nor the maximum 
likelihood estimate for λ was sensitive to the specific variant- 
calling threshold used. The 95% confidence interval, how
ever, did broaden at the lower variant-calling threshold of 
0.5% (supplementary fig. S7, Supplementary Material online). 
Overall, this sensitivity analysis provides reassurance that our 
findings are largely robust to changes in the variant-calling 
threshold used.

The second approach is to examine the empirical fre
quencies of the clonal variants called at a given variant- 
calling threshold. If a clonal variant is present at 0% in a 
donor and present at 100% in a recipient, then it is very like
ly that it arose de novo within the recipient and spread to 
fixation within that individual (although we cannot exclude 
the possibility that this variant was present as an iSNV in the 
donor at the time of transmission but was present in 0% of 
donor reads at the time of sampling). If a clonal variant is 
present at 0% in a donor and close to 100% (but not fixed) 
in the recipient, it is likely that the clonal variant arose de 
novo in the recipient but had not quite yet fixed in the re
cipient by the time of sampling. In this case, we may want to 
keep on considering this variant as a clonal variant. Finally, if 
a clonal variant is observed at a frequency above 0% in the 
donor (regardless of whether it is fixed or close to fixation in 
the recipient), we may want to be more cautious about call
ing this variant a clonal variant. This is because the donor 
may have transmitted this iSNV to the recipient. Based 
on these considerations, we revisited both of the empirical 
datasets. In the IAV dataset, of the 18 clonal variants iden
tified at the 3% variant-calling threshold, 12 were present at 
frequencies of 0% in the donor and 100% in the recipient. 
Five were present at frequencies of 0% in the donor and 
≥99.1% in the recipient. The remaining variant was present 
at 2.3% frequency in the donor and fixed at 100% in the 
recipient. We therefore considered an additional analysis 
where we included only the 17 clonal variants that were 
present in the donor at 0% frequency. This analysis 
resulted in similar estimates of μ and λ as in our original 
analysis (supplementary fig. S8, Supplementary Material
online). In the SARS-CoV-2 dataset, of the 4 clonal var
iants identified at the 3% variant-calling threshold, 3 
were present at frequencies of 0% in the donor and 
≥98.6% in the recipient. The remaining variant was 
present at 0.7% frequency in the donor and at 99.9% in 
the recipient. We therefore considered an additional ana
lysis where we included only the 3 clonal variants that 
were present in the donor at 0% frequency. Again, this 
analysis resulted in similar estimates of μ and λ as in our 

original analysis (supplementary fig. S9, Supplementary 
Material online).

Finally, we would like to note that if an iSNV that was 
present at very low frequency in the donor was transmit
ted and observed as fixed in the recipient, this would itself 
point toward a very small transmission bottleneck. This is 
because the probability of a low-frequency iSNV being 
transmitted and fixing in the recipient is higher at low N 
than at high N (Supplementary Material; supplementary 
fig. S10, Supplementary Material online). As such, even if 
a variant was erroneously called as a clonal variant when 
it was instead a low-frequency donor iSNV that was trans
mitted, its presence would consistently point toward a 
small transmission bottleneck size.

Considering Alternative Distributions for the Initial 
Number of Viral Particles That Start an Infection
In our analysis of the mock dataset as well as in our analysis of 
the empirical IAV and SARS-CoV-2 datasets, we assumed that 
the initial number of viral particles N was Poisson-distributed. 
This assumption is consistent with an underlying process in 
which viral particles are transmitted from a donor at a con
stant rate during a contact event with fixed duration time. 
However, because of variation in the amount of virus a donor 
expels or because of differences in contact duration or trans
mission routes, a Poisson distribution for the number of initial 
viral particles might not be a good assumption. We therefore 
considered 2 alternative distributions for the initial number of 
viral particles. We first considered a highly overdispersed 
negative binomial distribution for N, with a large proportion 
of recipients receiving only very few initial viral particles and a 
small proportion receiving many initial viral particles, such 
that the variance of the distribution greatly exceeds its 
mean. Assuming this distribution, we attempted to jointly es
timated its mean (λNB) and the mutation rate μ while setting 
the overdispersion parameter to a small value (k = 0.1). For 
both the IAV and SARS-CoV-2 datasets, we found that the 
mean of this negative binomial distribution was low, similar 
to our findings using the Poisson distribution (Fig. 5b 
and e). We next considered a model in which a proportion 
p of recipients received N = 1 viral particles from their do
nors, while the remaining proportion (1 − p) received a large 
number of viral particles from their donors. We assumed that 
the number of initial viral particles in the latter recipients was 
so large that none of them would harbor a clonal variant. For 
both IAV and SARS-CoV-2 datasets, we found that the pro
portion of recipients receiving N = 1 initial viral particles 
was very high (Fig. 5c and f). These additional analyses indicate 
that, while we do not know the underlying initial distribution 
of viral particles that recipients begin with, the pattern of clo
nal variants observed across transmission pairs points toward 
a large fraction of infected recipients starting their infection 
off with a very small number of initial viral particles. This 
does not exclude the possibility that a small fraction of in
fected recipients had their infections start off with a large 
number of initial viral particles, due to either contact with a 
donor that expelled a large amount of virus, a very long 
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contact with a donor, or a contact of a specific type that could 
result in a large number of initial viral particles in the recipient.

Discussion
Here, we developed a new statistical approach for estimating 
transmission bottleneck sizes from viral deep-sequencing 
data from donor–recipient transmission pairs. This approach 
differs from previous approaches in that it does not use the 
subset of viral sites that are identified as polymorphic in the 
donor. Instead, our approach relies on the number of clonal 
variants observed in the recipient. Observed clonal variants 
arise de novo shortly after transmission and are particularly 
well suited for estimating bottleneck sizes when bottlenecks 
are likely to be tight.

Our approach carries several advantages over existing ap
proaches. First, transmission pairs where the donor does not 
show any genetic variation are still informative and can be 
included in our analysis. Second, a misspecification of donor 
versus recipient in a transmission pair does not impact 

results, as the number of clonal variants is the same with a 
correct donor/recipient assignment or the reverse. Third, ex
isting studies that have looked at longitudinal viral samples 
have indicated that variant frequencies are highly dynamic 
over the course of an acute infection, consistent with a small 
within-host effective population size. As such, variant fre
quencies from a donor sample that are used to estimate 
bottleneck sizes may not reflect variant frequencies present 
in the donor at the time of transmission, and would lead to 
underestimates of Nb. Even if bottleneck sizes were large, 
changes in variant frequencies due to genetic drift in recipi
ents would similarly bias Nb estimates to be low. In contrast, 
our approach does not rely on variant frequencies in a donor, 
nor does it rely on variant frequencies in a recipient. As such, 
it is not subject to these same biases. Examination of our da
tasets also indicates that clonal variants remain clonal over 
the course of a recipient’s infection, such that the timing 
of the sampling event does not impact our dataset and 
thus does not impact our bottleneck size estimates. Finally, 
if viral particles from a donor are not randomly sampled, 

a b c

d e f

Fig. 5. Consideration of alternative distributions for the number of initial viral particles N. Top row shows IAV results. Bottom row shows 
SARS-CoV-2 results. a) Distribution of the number of clonal variants observed across the 52 IAV transmission pairs considered (dark green 
bars). The expected distributions using the IAV maximum likelihood parameter estimates are shown in green, light green, and orange bars, re
spectively, for the Poisson distribution, negative binomial distribution, and bimodal (N = 1 or N-large) distribution. b) Log-likelihood plot, show
ing the log(probability) of observing the IAV dataset across a range of λNB and μ values. Dashed red lines show the maximum likelihood values for 
λNB and μ. The parameter λNB quantifies the mean of the negative binomial distribution. The overdispersion parameter of the negative binomial 
distribution was set to k = 0.1. c) Log-likelihood plot, showing the log(probability) of observing the IAV dataset across a range of p and μ values. 
Dashed red lines show the maximum likelihood values for p and μ. The parameter p quantifies the proportion of recipients that start their in
fection off with N = 1 initial viral particles. d) Distribution of the number of clonal variants observed across the 39 SARS-CoV-2 transmission pairs 
considered (dark green bars). The expected distributions using the SARS-CoV-2 maximum likelihood parameter estimates are shown in green, 
light green, and orange bars, respectively, for the Poisson distribution, negative binomial distribution, and bimodal distribution. e) Log-likelihood 
plot, showing the log(probability) of observing the SARS-CoV-2 dataset across a range of λNB and μ values. Dashed red lines show the maximum 
likelihood values for λNB and μ. The overdispersion parameter of the negative binomial distribution was set to k = 0.1. f) Log-likelihood plot, 
showing the log(probability) of observing the SARS-CoV-2 dataset across a range of p and μ values. Dashed red lines show the maximum like
lihood values for p and μ. For both datasets, a 3% variant-calling threshold was used to call clonal variants.
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this does not impact our inference, while it would again bias 
Nb estimates to be low with existing inference approaches.

Despite these advantages of our new inference ap
proach, there are some limitations to it. First, estimation 
of transmission bottleneck sizes requires more than a sin
gle transmission pair. Second, our approach depends on a 
very limited subset of the donor and recipient deep- 
sequencing data. However, for the reasons we described 
above, we do not believe that patterns of shared genetic 
variation between the donor and the recipient are particu
larly informative of transmission bottleneck sizes, at least 
for acute viral respiratory infections such as influenza 
and SARS-CoV-2. Our approach does ignore de novo gen
etic variation that is subclonal in the recipient, however 
(that is, de novo variants that are called in a recipient 
but are not fixed). Our approach could, in principle, be ex
tended to accommodate these variants. However, based 
on longitudinal analyses of IAV infections (McCrone 
et al. 2018), we also think that many of these subclonal var
iants come and go over the course of an infection, such 
that they are not informative of the transmission bottle
neck size, but instead are more informative of the extent 
of genetic drift that occurs over the course of an acute in
fection. We thus do not recommend extension of our ap
proach to accommodate subclonal variants. Additional 
limitations of our approach include our assumption of in
finite sites and our assumption that all genetic variation is 
neutral. We do not believe that the infinite sites assump
tion would substantially bias our results because the num
ber of clonal variants is very small compared to the length 
of the viral genome. We also do not believe that the neu
trality assumption would substantially bias our results in 
the case of small transmission bottleneck sizes because 
genetic drift dominates in this regime, such that small fit
ness differences between viral particles will not impact the 
viral population’s evolutionary dynamics. Lethal deleteri
ous mutations will simply act to lower the mutation rate 
estimate or decrease the effective within-host R0 of the vir
al population.

Finally, our approach assumes complete genetic linkage 
across the viral genome. Again, we do not believe that this as
sumption would bias our results substantially, for several rea
sons. First, previous work has indicated that the effective rate 
of reassortment in human IAV infections is low even when vir
al titers are high (Sobel Leonard et al. 2017a), potentially due 
to spatial structure in the respiratory tract. As such, even if re
assortment or recombination for viral respiratory pathogens 
is common, this genetic exchange likely occurs between gen
etically identical viral haplotypes and would therefore not 
bias our bottleneck size estimates that assume that linkage 
is complete. Second, if a mutation arises de novo in a recipient 
and fixes, this is very likely to occur within the first few viral 
replication cycles when the extent to which viral genetic di
versification has occurred is limited and while viral popula
tion sizes in the recipient are still very small. Because of the 
small population sizes during this time period, the probability 
of high cellular multiplicity of infection may also be lower, and 
as such, the probability that recombination or reassortment 

occurs may be lower. If recombination or reassortment did 
occur early on during an infection, however, it could allow 
2 mutations that arose de novo in different genetic back
grounds to come into the same background, allowing both 
to fix when in the absence of recombination/reassortment, 
neither would fix. By not considering this possibility, our esti
mate of Nb would be biased low because we would ascribe the 
observation of 2 clonal variants in a recipient to be due to a 
small bottleneck rather than recombination/reassortment 
in the context of a larger bottleneck. Again, we think that 
the occurrence of this scenario is extremely rare, given that 
effective rates of recombination are likely to be low and 
that recombination/reassortment would have to occur very 
early on during infection when viral population sizes were still 
very small.

In our application to influenza A virus and to SARS-CoV-2, 
we found that transmission bottleneck sizes were very tight, 
consistent with previous findings of small Nb. This is an im
portant finding, given that previous methods, as elaborated 
on above, are likely to underestimate bottleneck sizes due to 
within-host genetic drift and the potential for viral aggrega
tion during the transmission process. That both this new ap
proach and existing approaches arrive at the conclusion of 
very small bottleneck sizes does not lessen the advantage 
of using this new approach over existing approaches. If 
bottleneck sizes were large, and existing methods were con
siderably underestimating them, the IAV and SARS-CoV-2 
datasets would not have contained any clonal variants. 
Our new approach would have indicated that for reasonable 
μ and within-host R0 values, we would have anticipated ob
serving clonal variants in a subset of the transmission pairs if 
bottleneck sizes were small. Their absence would therefore 
have argued against small bottleneck sizes and would have 
pointed toward previous methods indeed yielding biased es
timates. That both sets of approaches (those based on 
shared genetic variation and the current one based on de 
novo clonal variants) infer very small transmission bottle
necks provides compelling evidence that these bottlenecks 
for acutely infecting respiratory viral pathogens are indeed 
incredibly small. This raises the question of what environ
mental and molecular mechanisms constrain transmission 
bottleneck sizes. Are the number of viral particles that reach 
the respiratory tract of a recipient limited? Or do many viral 
particles reach a recipient’s respiratory tract but host and/or 
viral factors limit the number of viral lineages that establish? 
Our results of tight transmission bottleneck sizes for IAV and 
SARS-CoV-2 also indicate that reductions in viral population 
sizes between transmission events will have a large impact on 
shaping these viruses’ patterns of evolution and adaptation 
at the population level. Will these small bottlenecks ultim
ately act to impede viral adaptation or to facilitate it? And 
how will these tight bottlenecks impact population-level vir
al patterns, including patterns of antigenic change, genetic 
diversification, and deleterious mutation loads? Addressing 
these questions through theoretical and empirical studies 
will facilitate our understanding of viral transmission dynam
ics and ultimately guide our ability to curb the spread of 
these infectious diseases.
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