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Abstract
People living with HIV can acquire secondary infections through a process called super-
infection, giving rise to simultaneous infection with genetically distinct variants (multiple
infection). Multiple infection provides the necessary conditions for the generation of novel
recombinant forms of HIV and may worsen clinical outcomes and increase the rate of
transmission to HIV seronegative sexual partners. To date, studies of HIV multiple infec-
tion have relied on insensitive bulk-sequencing, labor intensive single genome amplifica-
tion protocols, or deep-sequencing of short genome regions. Here, we identified multiple
infections in whole-genome or near whole-genome HIV RNA deep-sequence data gen-
erated from plasma samples of 2,029 people living with viremic HIV who participated in
the population-based Rakai Community Cohort Study (RCCS). We estimated individual-
and population-level probabilities of being multiply infected and assessed epidemiolog-
ical risk factors using the novel Bayesian deep-phylogenetic multiple infection model
(deep – phyloMI) which accounts for bias due to partial sequencing success and false-
negative and false-positive detection rates. We estimated that between 2010 and 2020,
4.09% (95% highest posterior density interval (HPD) 2.95%–5.45%) of RCCS
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participants with viremic HIV multiple infection at time of sampling. Participants living in
high-HIV prevalence communities along Lake Victoria were 2.33-fold (95% HPD 1.3–
3.7) more likely to harbor a multiple infection compared to individuals in lower prevalence
neighboring communities. This work introduces a high-throughput surveillance framework
for identifying people with multiple HIV infections and quantifying population-level preva-
lence and risk factors of multiple infection for clinical and epidemiological investigations.

Author summary
HIV exists as a population of genetically distinct viral variants among people living with
HIV. People living with HIV can be infected with genetically distinct variants. Identi-
fication of these mixed infections requires generating viral genomic data from people
living with HIV. In the past, the approaches used to identify multiple infections from
viral genomic data have had poor sensitivity or required labor intensive protocols that
are prohibitive in application to large data sets. Prior work has also only utilized data
generated from small portions of the viral genome and the statistical procedures used
to generate population-level estimates from sequencing data generated from individual
infections has not accounted for incomplete sampling of the within-host viral population
or sources of sequencing error, which may confound multiple infection estimates. Here,
we develop a statistical model that addresses these limitations and allows for the iden-
tification of multiple infections and the estimation of population-level risk of multiple
infection from deep-sequence data. We fit this model to population-based HIV genomic
data from people living with HIV in southern Uganda and estimate that approximately
4% of viremic participants harbor a multiple infection at a given point in time. We
show that the prevalence of multiple infections is higher in key populations with high
HIV prevalence. These findings inform our understanding of the sexual risk networks
that give rise to multiple infections and aid in efforts to model HIV epidemiological
dynamics and evolution during a period of incidence declines and shifting transmission
dynamics across Eastern and Southern Africa.

and visualization code is available at
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1. Introduction
Simultaneous infection with multiple distinct variants of human immunodeficiency virus
(HIV) can occur through a process called superinfection following secondary exposure to
infected bodily fluids [1]. Following acquisition, infecting variants are shaped by within-
individual evolutionary processes and can either stably coexist or undergo competitive exclu-
sion [2,3]. Superinfection of PLHIV has important implications for the evolution, pathogen-
esis, and spread of HIV. Specifically, it provides the necessary conditions for the generation
of novel recombinant viruses [4,5], which fuels diversification of the circulating viral popu-
lation [6,7], complicating vaccine development efforts through the generation of novel epi-
topes [8,9] and potentially leads to the evolution of more transmissible viral genotypes [10].
Acquisition of superinfections may also increase the breadth and strength of the antibody
response to HIV infection [11–13], potentially aiding in the identification of broadly neutral-
izing antibodies [14]. Finally, multiple infections may themselves lead to faster disease pro-
gression [15–17] and higher viral load [16,17], thereby potentially also increasing the risk of
onward transmission [18,19]. While the availability of viral genome sequence data has allowed
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for the identification of HIV multiple infections across a range of epidemiological contexts
[20], prevalence estimates have generally been based on relatively small samples sizes with
only partial genome data. Here, we identify HIV multiple infections using within-host deep-
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sequence phylogenetic trees inferred across the genome from a population-based surveillance
cohort.

To date, viral sequence-based methods to identify HIV multiple infections have generally
relied on one of three approaches. First, bulk sequencing (e.g. Sanger sequencing or consensus
sequence estimation from deep-sequence data) can reveal instances where the majority viral
variant changes between baseline and follow-up visits under longitudinal sampling or cases
where the within-person viral population at a specific visit harbors abnormal levels of diver-
sity [16,21–23]. While this approach proved useful prior to the availability of deep-sequencing
technologies, it has a sensitivity of only ∼ 5% to detect variants present in ≤ 20% of the viral
population within a sample [24]. Alternatively, single genome amplification (SGA) relies on
serial dilutions to isolate a single molecule of transcribed viral cDNA prior to amplification
and sequencing [25–27]. This approach is more sensitive in detecting minor variants than
bulk sequencing and was considered the “gold standard” [28], but is labor intensive and dif-
ficult to apply at scale. Amplicon deep-sequencing of discrete regions of the HIV genome is
able to achieve high sensitivity while being highly scalable to large sets of samples and has
therefore been broadly applied to study multiple infections in larger studies [2,28–31].

Despite advancements in viral sequence-based identification of HIV multiple infections,
existing approaches share shortcomings that hinder the interpretation of the results they gen-
erate. Critically, all of these methods rely on sequence data generated from only a subset of
the genome, due in part to historical challenges in generating whole-genome HIV sequence
data. For example, general population-based studies in Rakai, Uganda have previously utilized
sequence data from 390 base pairs (bp) and 324 bp of the p24 (gag) and gp41 (env) regions,
representing only 7.3% of the HIV genome. This inherently limits sensitivity to identify mul-
tiple infection with viral variants that are highly related within these short regions. Analysis
of gag sequence data sampled from high-risk Kenyan women revealed cases of superinfection
that were unidentified when querying only the env region [32]. Further, limited considera-
tion has been given to the fact that factors that affect sequencing success of biological samples
[33] may also affect the detection probability of multiple viral variants and may therefore con-
found prevalence estimates and assessment of multiple infection risk factors. Finally, existing
methods generally use binary categorization of samples as either multiply or singly infected.
They do not quantify uncertainty in individual-level assignments and do not account for this
uncertainty when estimating population-level prevalence. With the advent of approaches that
can generate near whole-genome HIV deep-sequence data [33,34], there is a need for statis-
tical approaches that can integrate data from across the genome to robustly identify multiple
infections while accounting for the various sources of bias that can obscure the underlying
biological signal.

Here, we identify individuals that are likely to have multiple HIV multiple infection at the
time of sampling, provide minimum estimates of the prevalence of HIV multiple infections
in Rakai, Uganda between January 2010 and November 2020, and characterize risk factors
for harboring a multiple infection based on HIV RNA deep-sequence data obtained from
plasma samples of 2,029 people living with viremic HIV aged 15-49 who participated in the
longitudinal, population-based Rakai Community Cohort Study (RCCS) [35,36]. These esti-
mates reflect multiple infections present at time of sampling in plasma and, because infect-
ing variants may be lost over time due to within-host evolutionary processes [2,3], should
be interpreted as the minimum prevalence of people who have ever been multiply infected.
Rakai District is located in south-central Uganda, East Africa, bordering Lake Victoria, and
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is one of the areas with highest HIV-prevalence globally [37]. To support these inferences, we
developed a novel Bayesian statistical model to identify multiple infections using within-host
phylogenetic trees inferred from deep-sequence data generated from across the HIV genome,
which we call the deep-phylo multiple infection model (deep-phyloMI). Phyloscanner [38],
which analyzes within-host pathogen diversity from deep-sequencing reads, was used to
infer within-host phylogenetic trees across the HIV genome, remove contaminant sequences,
and identify regions of the genome with evidence of multiple infecting variants. Our model
simultaneously estimates individual- and population-level risks of harboring a multiple infec-
tion from processed phyloscanner output after accounting for incomplete sequencing of the
viral population within a sample and false-negative and false-positive rates of multiple vari-
ant identification. We validated model performance on simulated data and used it to iden-
tify multiple infections in RCCS participants over a period of declining incidence and rapidly
shifting transmission dynamics [35,39].

2. Materials and methods
2.1. Ethics statement
All participants provided written informed consent for the study. Written assent and written
parental consent were obtained for participants less than 18 years of age. The RCCS is admin-
istered by the Rakai Health Sciences Program (RHSP) and has received ethical approval from
the Uganda Virus Research Institute’s Research and Ethics Committee (GC/127/08/12/137),
the Uganda National Council for Science and Technology (HS450), and the Johns Hopkins
School of Medicine (IRB00217467).

2.2. Study design and participants
The RCCS conducts population-based surveys every 18–24 months in agrarian, semi-urban
trading, and Lake Victoria fishing communities in southern Uganda. Data in this study were
collected over six RCCS survey rounds conducted between January 2010 and November 2020.
As survey rounds occurred over more than a year, we herein refer to them by the median
interview date. Communities that participated in the RCCS were categorized based on their
geographic setting and primary economic activity (inland communities: agrarian/trading,
Lake Victoria communities: fishing). These communities differ considerably in their HIV bur-
den (HIV prevalence of ∼14% [agrarian], ∼17% [trading], and ∼42% [fishing]) [36]. At each
survey round, households were censused and all residents aged 15–49 who were able to pro-
vide consent (assent for those under 18) were invited to participate in a survey. Survey par-
ticipants were eligible to participate exactly once in each survey round (“participant-visits”).
As part of the survey, participants completed a detailed structured sociodemographic, behav-
ioral, and health questionnaire. Specifically, participants were asked to self-report their sex,
age, residency status (e.g. recent migration into a community), circumcision status (among
males), occupation, occupation of sex partners in the year prior to the survey, and number of
lifetime sex partners. As HIV is more prevalent among female sex and bar/restaurant work-
ers [40,41], we generated a composite variable indicating reported sex or bar/restaurant work
among women and sex with a sex or bar/restaurant worker among men to determine if these
individuals were at higher risk of being multiply infected.

To account for the fact that the number of lifetime sex partners increases over the lifespan,
we calculated the mean number of lifetime sex partners within population strata (s) defined
by HIV serostatus, sex, age category in five year bins, and community type (inland/fishing)
( ̄Ps) to allow for standardization of the observed responses. Responses of no lifetime sex
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partners were treated as missing data as HIV transmission in this setting is predominantly
heterosexual [42] and we therefore expected these individuals to have had at least one sexual
encounter in order to acquire HIV, although we cannot rule-out perinatal transmission with
available data. When calculating ̄Ps missing data was imputed to the mean value of a lognor-
mal distribution fit to all numeric responses of ≥ 1 lifetime sex partner within strata defined
by HIV serostatus, sex, age category, and community type. Additionally, some RCCS partic-
ipants provided categorical responses (“1–2” or “3+” lifetime sex partners). To calculate ̄Ps,
we first imputed these values to a numeric response. Responses of “1–2” were imputed to the
mean response among PLHIV reporting either one or two lifetime sex partners within strata.
Similarly, responses of “3+” were imputed to the mean value of a lognormal distribution fit to
all numeric responses of ≥ 3 lifetime partners within strata as above.

In addition to completing the survey questionnaire, participants provided venous blood
samples for HIV testing, viral load quantification, and viral deep sequencing. HIV serostatus
was evaluated using a validated rapid test algorithm [43]. HIV viral load quantification was
conducted using the Abbott real-time m2000 assay (Abbott Laboratories).

2.3. HIV deep sequencing and bioinformatic processing
HIV RNA deep-sequence data from plasma samples contributed by RCCS participants was
generated through the Phylogenetics and Networks for Generalized HIV Epidemics in Africa
consortium (PANGEA-HIV) [44–46]. The study sample included RCCS participants with
HIV who were viremic (≥ 1, 000 copies/mL) at one of their study visits between January 2010
and November 2020. To avoid biasing our inferences, for individuals that participated in mul-
tiple survey rounds we used only the data from the sample with the highest genome coverage
or the highest viral load in the case of ties in our analyses of multiple infections. The study
sample was further restricted to individuals in putative transmission networks and excluded
individuals for who another phylogenetically close individual could not be identified over the
entire study period [39]. All available sequence data for individuals in putative transmission
networks was included in phylogenetic analyses.

Deep-sequencing was performed with two protocols (S1 Table), as previously described [39].
Briefly, for sequence data generated through the amplicon protocol, viral RNA was extracted
from plasma samples on the QIAsymphony SP workstation with the QIAsymphony DSP
Virus/Pathogen Kit. cDNA was generated through one-step reverse transcription PCR pro-
tocol using universal HIV-1 primers designed to generate four overlapping amplicons across
the HIV-1 genome [34]. Deep-sequencing was conducted at the Wellcome Trust Sanger Insti-
tute core facility using the Illumina MiSeq and HiSeq platforms. To generate sequence data
using the bait-capture protocol viral RNA was similarly extracted using the QIAsymphony
DSP Virus/Pathogen Kit followed by library preparation according to the veSEQ-HIV proto-
col [33]. Library preparation was performed using the SMARTer Stranded Total RNA-Seq v2-
PicoInputMammalian (Clontech, TakaRaBio) kit and double-stranded dual-indexed cDNA
generated using in-house indexed primers. Libraries were pooled and cleaned with Agen-
court AMPure XMP. Pooled libraries were hybridized to HIV-specific biotinylated 120-mer
oligonucleotides (xGen Lockdown Probes, Integrated DNA Technologies) and isolated with
streptavidin-conjugated beads. Captured libraries were PCR amplified prior to generation
of 350-600 base pair (bp) paired-ends reads with the Illumina NovaSeq 6000 at the Oxford
Genomic Centre.

Kraken v.0.10.5-beta [47] with a custom database of human, bacterial, archael, viral, and
fungal genomes was used to isolate reads of viral and unknown origin which were trimmed
of adaptors and low-quality bases using trimmomatic [48] v.0.36/0.39. Trimmed reads
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were de novo assembled into contigs using SPAdes [49] and metaSPAdes [50] v.3.10. Shiver
v.1.5.7 [51] was used to align reads to a reference sequence constructed for each sample using
these contigs.

2.4. Inference of within-host deep-sequence phylogenetic trees
To improve the computational efficiency of our within-host deep-sequence phylogenetic anal-
yses we first clustered participants with HIV into putative transmission networks as previ-
ously described (S1 File) [39,52], and then grouped putative networks into batches for deep-
sequence phylogenetic analyses.

Deep-sequence data belonging to participants in each batch were further processed with
phyloscanner [38] v.1.8.1 to infer within-host phylogenetic trees in 287 sliding windows of
length 250 bp with a step size of 25 across the HIV genome as in [39]. As suggested in [38],
this window-size was chosen to be long enough to capture sufficient within-host diversity to
provide phylogenetic signal but no longer than the target read length and short enough to
minimize within-window recombination. Windows spanning env gp120 were excluded as
genetic diversity in the variable loop regions [53] led to poor sequence alignment and unre-
liable within-host phylogenetic trees. In addition to deep-sequence data from RCCS partic-
ipants, we included as phylogenetic background 113 consensus sequences from represen-
tative subtypes and circulating forms and 200 near full-length consensus sequences from
Kenya, Uganda, and Tanzania (Los Alamos National Laboratory HIV Sequence Database,
http://www.hiv.lanl.gov, S2 File). Within phyloscanner, MAFFT v.7.475 [54] with iterative
refinement and iterative re-alignment using consistency scores was used to align sequenc-
ing reads and IQ-TREE v.2.0.3 with the GTR+F+R(Free-Rate)6 substitution model was used
for phylogenetic inference [55,56]. Phylogenetic branch lengths within phyloscanner were
adjusted to account for varying substitution rates across the HIV genome as described in [57]
(S3 File). Adjusted distances can be interpreted as average distances expected in the pol gene.
The genomic coordinates of input sequence data were standardized to the coordinates of the
HIV-1 HXB2 reference genome (GenBank: K03455.1).

For each participant, phyloscanner was used to estimate the number of genetically dis-
tinct phylogenetic lineages (subgraphs) in each genome window using a modified parsimony
algorithm. In each window, for each participant, the given phylogenetic tree was pruned to
include only tips from the given participant and the specified outgroup (here, the subtype H
consensus sequence). Ancestral nodes in the pruned tree were assigned to one of two states:
either that of the participant or an unsampled “unassigned” state (to which the outgroup and
root of the phylogeny was assigned), representing the lineages that are evolutionarily ancestral
to the lineages that initiated a given host’s infection. To accurately assign nodes without rely-
ing on patterns of phylogenetic clustering with reference sequences, we employed a modified
Sankoff minimum parsimony algorithm for ancestral state reconstruction as described in [38,
58] (in particular, see Supplementary Information 1.2 and Supplementary Fig 1 in [38]). This
algorithm assigns a cost (c(n, h)) to a state change along a lineage ending at ancestral node n
that is proportional to the sum of the branch lengths descendant from that node that give rise
to tips form host h (l(n, h)). As tips from all other subjects with the exception of the outgroup
were pruned from the tree prior to this procedure (“single-host tree”), this is equivalent to the
sum of the total branch length of the subtree with node n as its root. Specifically, this cost was
calculated as:

c(n,h) = 1 + k × l(n,h), (1)

where k is a tuneable constant that controls the penalty associated with fewer host h sub-
graphs. Traditional parsimony is recovered when k = 0 which will always assign all tips in
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a single-host tree to a single subgraph, regardless of the phylogenetic branch length cap-
tured within that subgraph. As k→∞, each tip belonging to host h will be assigned to a
unique subgraph. Here, we parameterized k with the goal of distinguishing evolution that
occurred within a given host from evolution that occurred prior to HIV acquisition, in the
case of multiple infection. In the case of single infection, all tips in a single-host tree will be
closely related (e.g. Fig 1A) and therefore we want the ancestral reconstruction that minimizes
c(n, h) to assign all tips to a single subgraph. In the case of a multiple infection the tips will
be expected to fall into (≥)2 clades with relatively small within-subgraph distances but large
between-subgraph distances and we seek to parameterize k such that the ancestral reconstruc-
tion minimizing c(n, h) differentiates these clades into distinct subgraphs. We conservatively
used a k value of 15 such that 1

k = 0.067, which is greater than the 99th percentile of the pair-
wise genetic distances between epidemiologically confirmed HIV transmission pairs [57] and
comparable to within-subtype HIV genetic diversity within Rakai [7].

Quality filtering of inferred within-participant phylogenetic trees was performed with phy-
loscanner. Specifically, within each window, subgraphs with less than three reads or less than
1% of reads from a particular participant were marked as putative contaminants and removed
from the analysis. To mask regions with insufficient data for reliable phylogenetic inference
any window with less than 30 reads from a given participant after aforementioned filter was
also removed from the analysis. After filtering we identified the subgraphs with data from the
deep-sequenced reads from each sequenced sample for a given participant.

2.5. Bayesian model to identify multiple infections
We developed a Bayesian statistical model to identify samples harboring multiple infections
and estimate the prevalence of multiple infections in a set of deep-sequencing reads that were
processed with phyloscanner. We refer to this model as the the deep-phylo multiple infec-
tion model (deep-phyloMI). We first summarized the phyloscanner output for each sample
and each genomic window in terms of two binary variables, Nobs

i=1...n,w (presence/absence of
sequencing reads from sample i in window w following phyloscanner contamination filtering)
andMobs

i=1...n,w (presence/absence of multiple subgraphs for sample i in window w) where n is
the number of sequenced samples. To simplify notation below, when Nobs

i,w = 0 we setMobs
i,w = 0.

We further summarized the data for sample i into two quantities, Nobs
i =

nmax

∑
w=1

Nobs
i,w andMobs

i =

nmax

∑
w=1

Mobs
i,w where nmax is the number of genome windows.

2.5.1. Base model accounting for partial sequencing success of infecting variants We
first developed a base model that accounts for partial sequencing success across the HIV
genome in giving rise to the observed Nobs

i=1...n,w andMobs
i=1...n,w. Working from first principles,

we first derived a likelihood model for observing the pair of counts (Nobs
i ,Mobs

i ) for the unob-
served groups of samples with true multiple infection (Mi = 1) and single infection (Mi = 0),
and subsequently marginalise out the unknown true multiple infection status (eitherMi =
0 orMi = 1). Among samples from multiply infected individuals (Mi = 1), we assumed that
the probability of sequencing each of the infecting variants in window w was given by 𝜃i for
each sample i. The probability of sequencing at least one variant in each window is therefore
1 – (1 – 𝜃i)2 and the probability of sequencing both variants given at least one was sequenced
is therefore 𝜃i

2–𝜃i . Assuming sequencing success was independently and identically distributed
for each sample, we obtained

(Nobs
i ∣𝜃i,Mi = 1)∼ Binomial1+ (nmax, 1 – (1 – 𝜃i)2) (2a)
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(Mobs
i ∣Nobs

i ,𝜃i,Mi = 1)∼ Binomial(Nobs
i ,

𝜃i
2 – 𝜃i

) , (2b)

where Binomial1+ represents the 0-truncated Binomial distribution as we only consider data
from individuals with phyloscanner output in at least one genomic window, and nmax is the
total number of genomic windows. This model implicitly accounts for the presence of win-
dows in which only a single variant was present in the phyloscanner output due to incomplete
sequencing success. For samples from individuals infected with only a single variant (Mi = 0),
we obtained analogously

(Nobs
i ∣𝜃i,Mi = 0)∼ Binomial1+ (nmax,𝜃i) (3a)

(Mobs
i ∣Nobs

i ,𝜃i,Mi = 0)∼ Binomial (Nobs
i , 0) . (3b)

Taken together, the joint likelihood of observing the count pair (Mobs
i , Nobs

i ) conditional on
latent multiple infection statusMi is given by

P(Nobs
i ,Mobs

i ∣𝜃i,Mi) = P(Nobs
i ∣𝜃i,Mi)P(Mobs

i ∣Nobs
i ,𝜃i,Mi). (4)

Thus, aggregating over the two unknown possible multiple infection statesMi ∈ {0, 1} for
each sample in a finite mixture model framework, we have

P(Nobs
i ,Mobs

i ∣𝜃i) =
∑
m=0,1

P(Nobs
i ∣𝜃i,Mi =m)P(Mobs

i ∣Nobs
i ,𝜃i,Mi =m)P(Mi =m). (5)

One of our primary inferential targets was the individual-level probability of harboring
multiple infection not conditional on observed Nobsi andMobs

i , which we denoted with 𝛿i =
P(Mi = 1). Making this target explicit in the joint likelihood, we have

P(Nobs
i ,Mobs

i ∣𝜃i,𝛿i) = (6a)

𝛿i × P(Nobs
i ∣𝜃i,Mi = 1)P(Mobs

i ∣Nobs
i ,𝜃i,Mi = 1) (6b)

+ (1 – 𝛿i)× P(Nobs
i ∣𝜃i,Mi = 0)P(Mobs

i ∣Nobs
i ,𝜃i,Mi = 0), (6c)

and so the log posterior distribution of the parameters 𝜃 = (𝜃1,… ,𝜃n), 𝛿 = (𝛿1,… ,𝛿n) for all
the data x = ((Nobs

1 ,Mobs
1 ),… , (Nobs

n ,Mobs
n )) under our model is

log f(𝜃,𝛿∣x)∝
n
∑
i=1
( logP(Nobs

i ,Mobs
i ∣𝜃i,𝛿i) + log f(𝜃i,𝛿i)), (7)

where we use f to denote posterior and prior densities.
2.5.2. Base model prior densities In the base model, prior to observing data, we mod-

elled the individual-level probability of multiple infection as identical for all i with the prior
density,

logit (𝛿i) = 𝛿0 ∼Normal(0, 3.162), (8)

with diffuse variance [59]. Given the known log-linear dependency of sequencing success on
log viral load [33], known differences in sequencing success rates by sampling protocol [39],
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and other factors, we specified the prior on the individual-level sequencing probability 𝜃i
through a logistic mixed effects model. Specifically, we modeled logit(𝜃i) with

logit (𝜃i) = 𝛼0 + 𝜎stz𝛼1Xamplicon
i + 𝜎stz𝛼2Xbait

i + (9a)

𝛼3Vi + 𝛼4Va
i X

amplicon
i + 𝛼5Vb

i X
bait
i + 𝛼i (9b)

𝛼0 ∼Normal(0, 22) (9c)

𝛼3 ∼Normal(0, 22) (9d)

(𝛼1,𝛼2)∼ 𝜎stz × stz-MVN(0, 1) (9e)

(𝛼4,𝛼5)∼ 𝜎stz × stz-MVN(0, 1) (9f)

𝛼i ∼Normal(0,𝜎2
ind) (9g)

𝜎ind ∼Half-Cauchy(0, 1), (9h)

where Xamplicon
i and Xbait

i are indicator variables for whether sample i was sequenced using
the amplicon or bait capture approach respectively and Vi, Va

i , and Vb
i are the sample log10

copies/mL values standardized to have mean zero and standard deviation 1 among all samples
and among only the amplicon (Va

i ) and bait capture (Vb
i ) samples, respectively. To maintain

identifiability we constrain 𝛼1 + 𝛼2 = 𝛼4 + 𝛼5 = 0 by specifying their joint prior distributions
with a zero-mean multivariate normal with a particular variance-covariance matrix described
in [59], such that all marginal distributions are standard normal, e.g. 𝛼1 ∼Normal(0, 1) and
𝛼2 ∼Normal(0, 1), which we represent with the notation stz-MVN. To maintain marginal
priors with standard deviation 𝜎stz = 2, we adopt a non-centered parameterisation and post-
multiply the sum-to-zero random variables with 𝜎stz. Finally, 𝛼i denotes an individual-level
random effect.

2.5.3. Modelling false-negative and false-positive phylogenetic observations We
extended the base model to account for possible false-negative and false-positive phyloge-
netic observations, accounting for incomplete removal of false-positive observations through
phyloscanner, and/or incomplete phylogenetic identification of multiple infections due to
insufficient phylogenetic background. First, among samples from individuals in whichMi = 1
we accounted for the scenario in which both variants are successfully sequenced in a given
window but were identified as a single phylogenetic clade by phyloscanner, i.e. false-negative
observations, by modifying our data-generating model to

(Mobs
i ∣Nobs

i ,𝜃i,Mi = 1)∼ Binomial(Nobs
i ,

𝜃i
2 – 𝜃i

(1 – 𝜆)) , (10)

where 𝜆 represents the false-negative rate. We analogously accounted for the scenario in
which only a single variant was sequenced but phyloscanner spuriously assigned multi-
ple subgraphs in a given window, i.e. false-positive observations, through a false-positive
rate 𝜖 in the model. We modeled false-positives among samples lacking multiple infec-
tion and among windows in multiply infected samples in which only a single variant was
sequenced, which occurs with probability 2 1–𝜃i

2–𝜃i when Ni,w = 1, but was spuriously assigned
to two subgraphs. Note that because we did not differentiate between windows with exactly
2 and >2 subgraphs, we do not consider the scenario where both variants are sequenced
in a true multiple infection and the two sequenced variants are spuriously assigned to 3
or 4 subgraphs. Our data generating model was updated to account for false-positives and
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false-negatives as:

(Mobs
i ∣Nobs

i ,𝜃i,Mi = 1)∼ Binomial(Nobs
i ,

𝜃i
2 – 𝜃i

(1 – 𝜆) + 2𝜖1 – 𝜃i
2 – 𝜃i

) (11a)

(Mobs
i ∣Nobs

i ,𝜃i,Mi = 0)∼ Binomial (Nobs
i , 𝜖) , (11b)

with additional prior densities

logit(𝜆)∼Normal(0, 1)[, 2.2] (12a)
logit(𝜖)∼Normal(0, 1), (12b)

where [,2.2] represents that logit(𝜆) was constrained to be <2.2 and all other components of
the model remaining as above.

2.5.4. Estimating risk factors of multiple infection We further extended the model
described above to model the probability of multiple infection as dependent on potential clin-
ical, behavioral, and/or epidemiological risk factors through a logistic regression approach.
Specifically, we modeled the logit of the individual-level multiple infection prior probabilities
as a linear predictor of fixed effects,

logit (𝛿i) = Xrisk
i 𝛽 = 𝛿0 +

nc
∑
j=1

Xj
i𝛽j (13a)

𝛽j ∼Normal(0, 1), if kj = 1 (13b)
𝛽j ∼ stz-MVN(0, 1), if kj > 1, (13c)

where Xj
i are 1× kj dimensional row vectors for each of nc putative multiple infection pre-

dictive covariates and 𝛽j are kj × 1 dimensional column vectors of fixed effect coefficients.
For all categorical j in nc with kj levels, we model the corresponding kj fixed effects with the
sum-to-zero joint multivariate normal prior defined above to maintain identifiability.

We also considered a fixed effects model with Horseshoe-type shrinkage priors [60,61] on
the effect sizes to handle correlated individual-level covariates. To maintain desirable sum-
to-zero properties, we define a global non-negative shrinkage parameter 𝜏 ∈ [0,∞), and for
each categorical j with kj levels kj non-negative local shrinkage parameters 𝜉j ∈ [0,∞)kj , and
the diagonal matrix Dj = diag(𝜉j). We then specify kj sum-to-zero shrinkage effects 𝛽j through
a joint zero-mean multivariate normal distribution with variance covariance matrix kj

kj–1
[Dj

– Dj1(1TDj1)–11TDj], such that 0 =∑kj
l=1 𝛽j,l and the induced marginal distributions of each

𝛽j,l are Normal(0, 𝜉2j,l), which we refer to stz-MVN(0, 𝜉2j ). We incorporated the global shrink-
age parameter in non-centered parameterisation through post-multiplication as in Eq 9.
Therefore, we have:

logit (𝛿i) = Xrisk
i 𝛽 = 𝛿0 +

nc
∑
j=1

Xj
i𝛽j (14a)

𝛽j∣𝜉j, 𝜏 ∼ 𝜏 ×Normal(0, 𝜉2j ), if kj = 1 (14b)

𝛽j∣𝜉j, 𝜏 ∼ 𝜏 × stz-MVN(0, 𝜉2j ), if kj > 1 (14c)

𝜉j ∼Half-t2(0, 1) (14d)
𝜏 ∼Half-Cauchy(0, 1), (14e)
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where we modelled the 𝜉j with t-distributions with 2 degrees of freedom instead of Cauchy
distributions to ease numerical sampling.

As above, the number of lifetime sex partners included missing and ambiguous responses
(e.g. “3+”), and these values were estimated as additional random variables in the Bayesian
inference, assuming they were missing at random within sex, age, and community type, using
lognormal prior distributions specific to these strata defined by the non-missing responses as
above. Imputed values for missing responses were limited to the range [1,60] and responses of
“3+” were limited to the range [3,60].

2.5.5. Parameter estimation We estimated joint posterior distributions numerically using
Hamiltonian Monte Carlo [62] with the No-U-Turn Sampler [63] implemented in Stan [59]
and accessed through cmdStanR v.2.36.0 [64] in R. For all analyses, four independent chains
with 2,000 iterations of warm up and 2,000 iterations of sampling were run. A target accep-
tance rate of 0.8 was used for all analyses with the exception of those that employed shrinkage
priors where a target acceptance rate of 0.95 was used to avoid divergent transitions. Con-
vergence was assessed using the R̂ statistic, bulk and tail effective sample sizes (ESS) for each
parameter [65], and visual inspection of trace and pairs plots.

2.5.6. Generated quantities Based on the estimated parameter distributions of the mod-
els described above, we generated a number of quantities to aid in interpretation of our
results.

2.5.6.1. Posterior probabilities of individual-level multiple infection.
We computed the posterior probabilities of individual-level multiple infection directly from
Monte Carlo samples of the joint posterior density via

P(Mi = 1∣Nobs
i ,Mobs

i ,nmax) =

∫ P(Mi = 1∣Nobs
i ,Mobs

i ,nmax,𝜃i,𝛿i,𝜆, 𝜖)P(𝜃i,𝛿i,𝜆∣Nobs
i ,Mobs

i )d(𝜃i,𝛿i,𝜆),
(15)

by taking for each individual i all Monte Carlo samples of the posterior density of (𝜃i,𝛿i,𝜆),
evaluating P(Mi = 1∣Nobs

i ,Mobs
i ,nmax,𝜃i,𝛿i,𝜆, 𝜖) according to:

P(Mi = 1∣Nobs
i ,Mobs

i ,nmax,𝜃i,𝛿i,𝜆, 𝜖) =
𝛿i × P(Nobs

i ,Mobs
i ∣nmax,𝜃i,𝜆, 𝜖,Mi = 1)

P(Nobs
i ,Mobs

i , ∣nmax,𝜃i,𝛿i,𝜆, 𝜖)
, (16)

and calculating the expectation across these.

2.5.6.2. Prevalence of multiple infection in the study sample.
Following from prior work on Bayesian latent class models with covariates [66–71], under the
base model the posterior estimate of the prevalence of multiple infection in the study sample
is given by:

̄𝛿 = inverse-logit (𝛿0) =
exp(𝛿0)

1 + exp(𝛿0)
, (17)

where 𝛿0 is from the joint posterior density of the model defined by Eqs 8, 9, 11, and 12. In
the presence of modeled risk factors, the prevalence of multiple infections in the study sam-
ple will vary based on sub-groups s defined by Xrisk. In the case where Xrisk contains only the
covariates used to define s:

̄𝛿s = inverse-logit (𝛿0 + Xrisk
s 𝛽) . (18)
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Finally, we estimated the prevalence in a target population (e.g. the entire sample of
sequenced viremic RCCS participants) through post-stratification:

̄𝛿 =

S
∑
s=1

Qs ̄𝛿s
S
∑
s=1

Qs

, (19)

where Qs are the number of sampled individuals in each of the S sub-populations s and ̄𝛿s are
the sub-group specific prevalence estimates from Eq 18.

2.5.6.3. Prevalence and risk ratios of harboring multiple infection associated with
epidemiological covariates.
We calculated a posterior estimate for the prevalence risk ratio (PRR) of multiple infections in
epidemiological strata s* as compared to strata s as

PRRs∗ ,s =
̄𝛿s∗
̄𝛿s
. (20)

In the case where Xrisk contained additional covariates beyond those used to define s* from
s we estimated a multivariate risk ratio (RR) associate with the covariate(s) that distinguish s*

from s by calculating the ratio of the estimated risk of multiple infection for person i as if they
belonged to strata s* divided by the risk of multiple infection of the same person i as if they
belonged to strata s, while holding all other covariates at their observed values (based on the
design matrices Xrisk

i∣i∈s∗ and Xrisk
i∣i∈s, respectively):

RRs∗ ,s =
1
n

n
∑
i=1

inverse-logit(𝛿0 + Xrisk
i∣i∈s∗𝛽)

inverse-logit(𝛿0 + Xrisk
i∣i∈s𝛽)

. (21)

2.5.6.4. Post-stratification adjustments.
Finally, because sequence data was not available for all viremic participants with HIV in our
study population, we employed post-stratification based on prevalence estimates in epidemio-
logical sub-groups s to estimate the prevalence of multiple infections in the population under
study (viremic study participants) [72]. Specifically, we calculated

̄𝛿∗ =

j
∑
s=1

Ws ̄𝛿s
j
∑
s=1

Ws

, (22)

whereWs is the estimated population size or estimated relative population size of sub-group
s. The population prevalence ratio between two non-overlapping composite sub-groups can
therefore be calculated as in Eq 20. We performed post-stratification based on the total num-
ber of participant-visits from viremic PLHIV stratified by age ((14, 24], (24, 34], and (34, 49]
years), sex, and community type. Because viral load measurements were not routinely con-
ducted for all PLHIV in the 2010 and 2012 survey rounds we calculated population-sizes
using only participant-visits in the 2014-2019 survey rounds.
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2.6. Simulation study
We used simulations to validate our inference model. For all simulations, we simulated data
for nmax = 29 genome windows in n = 2, 000 samples which were assigned a normalized log10
viral load (Vi) with random draws from a N(0,1) distribution. For all samples, 𝛼i was drawn
from a N(0,1) distribution and 𝜃i calculated as 𝛼0 + 𝛼1Vi + 𝛼i with 𝛼0 = 2 and 𝛼1 = 2. Under
these parameters, we generated three simulated data sets as described below.

2.6.1. Base simulation

Mi = [1×100]⊕ [0×1900] (23a)

(Nobs
i ∣Mi = 0)∼ Binomial1+(29,𝜙i) (23b)

(Nobs
i ∣Mi = 1)∼ Binomial1+(29, (1 – (1 – 𝜙i)2) (23c)

(Mobs
i ∣Mi = 0)∼ Binom (Nobs

i , 0) (23d)

(Mobs
i ∣Mi = 1)∼ Binomial(Nobs

i ,
𝜙i

2 – 𝜙i
) , (23e)

where [x×n] represents a vector of x repeated n times and⊕ represents concatenation of two
vectors.

2.6.2. Full simulation

Mi = [1×100]⊕ [0×2000] (24a)

(Nobs
i ∣Mi = 0)∼ Binomial1+(29,𝜙i) (24b)

(Nobs
i ∣Mi = 1)∼ Binomial1+(29, (1 – (1 – 𝜙i)2) (24c)

(Mobs
i ∣Mi = 0)∼ Binom (Nobs

i , 𝜖) (24d)

(Mobs
i ∣Mi = 1)∼ Binom(Nobs

i ,
𝜙i

2 – 𝜙i
(1 – 𝜆) + 2𝜖1 – 𝜙i

2 – 𝜙i
) (24e)

𝜆 = 0.30 (24f)
𝜖 = 0.01. (24g)

Additional simulations from this simulation model were generated with all other param-
eters held constant except (A):∑n

i Mi = 0, 300, 600, (B): 𝜆 = 0.10, 0.20, 0.40, and (C): 𝜖 =
0, 0.005, 0.05.

2.6.3. Extended simulation

Mi = [1×150]⊕ [0×1850] (25a)

Xrisk
,1 = [1×100]⊕ [0×50]⊕ [1×900]⊕ [0×950] (25b)

Xrisk
i,2–5 ∼ shuffle([1×1000]⊕ [0×1000]) (25c)

(Nobs
i ∣Mi = 0)∼ Binomial1+ (29,𝜙i) (25d)

(Nobs
i ∣Mi = 1)∼ Binomial1+ (29, (1 – (1 – 𝜙i)2) (25e)

(Mobs
i ∣Mi = 0)∼ Binomial (Nobs

i , 𝜖) (25f)

(Mobs
i ∣Mi = 1)∼ Binomial(Nobs

i ,
𝜙i

2 – 𝜙i
(1 – 𝜆) + 2𝜖1 – 𝜙i

2 – 𝜙i
) , (25g)
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where Xrisk
i,j represents the entry in the ith row and jth column of the design matrix Xrisk and

shuffle(v) denotes shuffling the elements of v.

2.7. Data analysis and visualization
All data analysis was conducted in R v.4.4.1 [73] using the tidyverse [74] with dplyr
v.1.1.4 [75], tibble v.3.2.1 [76], and tidyr v.1.3.1 [77]. Haven v.2.5.4 [78] was used to parse a
subset of input data files. Visualization of data and results was done using ggplot2 v.3.5.1 [79]
with bayesplot v.1.11.1 [80,81], cowplot v.1.1.3 [82], and patchwork v.1.2.0. [83]. Phylogenetic
trees were manipulated and visualized using ape v.5.8 [84], ggtree v.3.12.0 [85–89], phytools
v.2.1.-1 [90], and tidytree v.0.4.6 [85]. Highest posterior density intervals were calculated with
HDInterval v.0.2.4 [91] and convergence statistics were assessed with posterior v.1.6.0 [92].
Preliminary analyses and model fitting was performed using fitdistrplus v.1.1-11 [93].

3. Results
3.1. Phylogenetic signatures of multiple infection in population-based
pathogen surveillance
Between 2010 and 2020, 50,967 participants contributed to the RCCS in 109,608 visits over
six survey rounds. Overall, 8,841 participants were HIV seropositive and 3,586 were viremic
(plasma viral load ≥ 1,000 copies/mL) at one of their visits (S2 and S3 Tables). Of these, 2 ,029
individuals were sampled between January 2010 and November 2020, had HIV RNA deep-
sequence data available at minimum quality criteria for deep-sequence phylogenetic analysis,
and were identified as a member of a putative transmission network (Tables 1 and S4 and S1
File.). Availability of sequence data among viremic participants was generally higher among
men, from residents of fishing communities, and from participants aged 25-34 years.

We next inferred within-host phylogenies from deep-sequencing reads in twenty-nine 250
bp non-overlapping genomic windows using phyloscanner (S4 File.), which captured evolu-
tionary relationships of HIV variants within individual participants. Sequencing coverage var-
ied significantly between samples (median [interquartile range (IQR)]: 5000 [4250] bp, S1A
Fig) but was generally higher among bait capture sequenced samples and samples with higher
viral load. Across the genome, sequencing success was highest in gag (Figs 1F and S1B), likely
due to differential amplification efficiency of the primers used in the amplicon sequencing
approach [94].

To characterise phylogenetic signatures of multiple infection, we used phyloscanner to
identify distinct co-circulating variants among participants with viremic HIV (Materials
and methods and Fig 1A and 1B). We tabulated the number (Mobs

i ) of genome windows in
which distinct phylogenetic lineages (phylogenetic subgraphs) were observed. The median
genetic distance between the most recent common ancestors of subgraphs in genome win-
dows with multiple subgraphs was 0.19 [IQR: 0.17] substitutions/site (Figs 1C and S2), which
is consistent with contemporary circulating genetic diversity within Rakai [7,57]. Empirically,
181 (8.92%) samples had multiple subgraphs in at least one of the 29 non-overlapping win-
dows (Fig 1D). Among these, the proportion of sequenced windows in which multiple sub-
graphs were observed varied considerably, but was generally relatively rare (median [IQR]
11.11 [19.14]% of sequenced windows for each sample, 2 [3] windows total). We observed
a clear dependence of the ability to identify multiple subgraphs on sequencing success as
quantified by genome coverage in the phyloscanner output. Of those samples with sequence
data in all genome windows, 12.26% (52/424) had at least one window with multiple sub-
graphs compared to 8.04% (129 / 1605) among the remaining samples. Multiple subgraph
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Fig 1. Empiric phylogenetic multiple infection signatures from 2,029 samples from people with viremic HIV in
the Rakai Community Cohort Study, 2010-2020. (A) Representative within-host phylogenetic tree lacking evidence
of multiple phylogenetic subgraphs. (B) Representative within-host phylogenetic tree with two subgraphs as indicated
by the green and blue shading of the tips. (C) Distribution of branch length distance between the MRCAs of the two
subgraphs with the most sequencing reads in all genome windows windows with ≥ 2 subgraphs from all samples.
Bins are shaded according to the 95th and 50th percentile. Vertical dotted line indicates median value. Binwidth is
calculated such that there are approximately 50 bins across the range of observed values. (D) Per-sample number
of non-overlapping genome windows with sequence data versus the number of non-overlapping genome windows
with multiple subgraphs. Samples with at least one window with multiple subgraphs are shown in purple. Points have
been jittered along both the X and Y axes for visual clarity. Dotted line shows modeled prediction in the absence
of false-positive or false-negative multiple subgraph windows. Marginal densities are shown at right and above the
scatter-plot. (E) Schematic of the HIV genome based on the coordinates from HXB2 (Genbank: K03455.1). (F) Num-
ber of samples with sequence data in each of the 29 non-overlapping genome windows. (G) Number of samples with
evidence of multiple subgraphs in each of the 29 non-overlapping genome-windows.

https://doi.org/10.1371/journal.ppat.1013065.g001
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Table 1. Characteristics of the study sample obtained from population-level HIV deep-sequence surveillance in
the Rakai Community Cohort Study, 2010-2020, stratified by availability of deep-sequence data.

Participants living with HIV
Processed w/ PHSC

All Viremic n (%) % of viremic (95% CI)
Overall 8,841 3,586 2,029
Survey Round
2010 1,812 (21.72%) 35 (1.11%) 16 (0.79%) 45.71% (30.46%–61.82%)
2012 2,202 (26.4%) 992 (31.58%) 749 (36.91%) 75.5% (72.73%–78.08%)
2014 1,170 (14.03%) 653 (20.79%) 346 (17.05%) 52.99% (49.15%–56.79%)
2015 1,292 (15.49%) 727 (23.15%) 523 (25.78%) 71.94% (68.56%–75.09%)
2017 1,080 (12.95%) 511 (16.27%) 328 (16.17%) 64.19% (59.94%–68.23%)
2019 786 (9.42%) 223 (7.1%) 67 (3.3%) 30.04% (24.4%–36.37%)

Sex
Female 5,315 (63.71%) 1,685 (53.65%) 1,032 (50.86%) 61.25% (58.9%–63.54%)
Male 3,027 (36.29%) 1,456 (46.35%) 997 (49.14%) 68.48% (66.04%–70.81%)

Commiunity type
Inland 4,974 (59.63%) 1,212 (38.59%) 742 (36.57%) 61.22% (58.45%–63.92%)
Fishing 3,368(40.37%) 1,929(61.41%) 1,287 (63.43%) 66.72% (64.58%–68.79%)

Age
(14, 24] 1,472 (17.65%) 678 (21.59%) 431 (21.24%) 63.57% (59.88%–67.11%)
(24, 34] 1,472 (46.45%) 678 (50.21%) 1,052 (51.85%) 66.71% (64.34%–68.99%)
(34, 49] 2,995 (35.9%) 886 (28.21%) 546 (26.91%) 61.63% (58.38%–64.77%)

Viral load (log10
copies/mL)
(3, 3.5] 466 (14.84%) 275 (13.55%) 59.01% (54.49%–63.39%)
(3.5, 4] 803 (25.57%) 522 (25.73%) 65.01% (61.64%–68.23%)
(4, 4.5] 806 (25.66%) 521 (25.68%) 64.64% (61.28%–67.86%)
(4.5, 5] 661 (21.04%) 447 (22.03%) 67.62% (63.96%–71.08%)
(5,∞] 405 (12.89%) 264 (13.01%) 65.19% (60.42%–69.66%)

For each participant, includes data from the participant-visit processed with PHSC if applicable or the participant-
visit with the highest viral load, using the first visit in the case of ties or for people not living with HIV. Viremic
participants excludes individuals living with HIV with suppressed viral load or missing viral load data. Viral load
testing was not routinely conducted in earlier study rounds and was available for 37.32% of participant-visits con-
tributed by people living with HIV in the 2010 and 2012 rounds. In recent rounds, viral load testing is routinely
conducted and is available for 99.67% of participant-visits contributed by people living with HIV in the 2014-
2019 surveys. Percentages represent the row percentages within each category. Binomial confidence intervals were
calculated using the Agresti–Coull method. PHSC = phyloscanner.

https://doi.org/10.1371/journal.ppat.1013065.t001

windows were more common in the genome windows corresponding to gag, env, and nef,
likely reflecting circulating genetic diversity in these regions with higher substitution rates
[95]. Previous studies of HIV multiple infection in this setting have used amplicon-based
deep-sequencing of two regions in p24 (1427–1816) and gp41 (7941–8264) regions [2,29,30].
Of 1,742 sequenced participants with data in windows spanning these regions (S4 File.), 75
(4.31%) had multiple subgraphs in one of the regions.

3.2. Bayesian model to identify multiple infections from pathogen
deep-sequence data
The observed dependence between phylogenetically identified samples with multiple infec-
tion and successful genome sequencing implies it is difficult to deduce the underlying preva-
lence of multiple infections from the empirical data without a statistical model that accounts
for partial sequencing success, false-positive multiple subgraphs, and false-negative unique
subgraphs within hosts. Specifically, because identification of multiple infection requires suc-
cessful sequencing of both variants and genetic divergence between those variants, there is
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inherently more uncertainty in multiple infection status when sequencing success is poor
or when infecting variants are genetically related in the sequenced region of the genome.
Further, contamination or sequencing errors may give rise to spurious within-host genetic
diversity and thereby inflate the estimated prevalence of multiple infection.

Therefore, we constructed a Bayesian model accounting for partial sequencing success
to estimate the probabilities that each individual harbors a multiple infection, prevalence of
multiple infection among deep-sequenced viremic participants, and risk factors for multi-
ple infection (Materials and methods). We first verified that we were able to accurately esti-
mate model parameters on simulated test data in the presence of incomplete sequencing suc-
cess (S5 Table.). Next, we investigated the impact of false-positive and false-negative obser-
vations, as empiric analyses of RCCS deep-sequence data indicated that false-negative rates
were likely substantial in that among samples withMobs

i > 0, the observedMobs
i values for

a given number of sequenced windows (Nobs
i ) was less than expected based on our model

(S1 File. and Fig 1D). We found that failing to account for these errors led to an overestima-
tion of the prevalence of multiple infections on simulated data (Fig 2A and S6 Table.). This
prompted us to explicitly include false-positive and false-negative detection rates in our model
as free parameters. With this, we found that model parameters could be accurately estimated
on simulated data (Fig 2B–2H and S7 Table.). Model performance was robust across simula-
tions covering a range of reasonable values of the prevalence of multiple infections as well as
false-positive and false-negative rates of multiple subgraph observation(S3, S4, and S5 Figs).

To identify risk factors for multiple infection among people living with HIV, we formu-
lated an extended model in which individual-level prior multiple infection probabilities are
described with a logit linear predictor of putative risk factors. On simulated data, this model
accurately estimated the true risk ratio associated with a covariate leading to a two-fold higher
probability of harboring a multiple infection (risk ratio (RR) median [95% HPD] 1.74 [1.08–
2.48]) in the context of four additional background null covariates (S8 Table.).

3.3. Prevalence of HIV multiple infections among sequenced participants
We next considered estimating the prevalence of multiple infection in the sequenced sample
of 2,029 participants living with viremic HIV. In a model accounting for partial sequencing
success and false-positive and false-negative observations of multiple subgraphs we estimate
that 92 (4.53%) of the sequenced viremic PLHIV had a median posterior probability of multi-
ple infection greater than 50% when allowing the probability of multiple infection (𝛿i) to vary
by age, sex, and community type (Figs 3A, 3B, and S6). Our empirical analyses above demon-
strated that the number of genome windows with multiple subgraphs is less than would be
expected in the absence of false-negatives (Fig 1D). In line with this observation, the model
estimated a high false-negative rate (median [95% HPD] 57.63% [53.27%–61.99%], S9 Table.),
implying that empirical phylogenetic signatures of multiple infection under-estimate the true
infection status of individuals in any single HIV genomic window. It was therefore essential to
have whole-genome data from a subset of participants (Fig 1) to estimate false-negative detec-
tion rates. Further, informed by the 91.08% of samples with no multiple subgraph windows,
we estimated the false-positive rate to be low (0.32% [0.26%–0.4%]). However, we note that
even a low absolute rate will likely give rise to spurious multiple subgraph observations in a
large sample size, which warrants consideration in our statistical framework.

In this model, the estimated prevalence of multiple infections in the study sample was
5.86% [4.65%–7.21%] (S9 Table.). Relaxing our minor subgraph frequency-based filtering
step resulted in only a slightly higher prevalence of multiple infections in the study sample
(6.1% [4.86%–7.39%], S10 Table.). When considering only genome windows spanning the
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Fig 2. Verification of model accuracy for estimating multiple infection prevalence on simulated data with incomplete sequencing success and false-negative
and false-positive observations. (A) Number of windows with sequence data (x-axis) v. number of windows with multiple subgraphs (y-axis) for each simulated
sample. Data from multiply infected samples is highlighted in red. Marginal distributions are shown at right and above. (B) Estimated posterior probability of
multiple infection for each sample. Confidence bounds represent the 95% highest posterior density. Data for each sample is shaded as in (A). (C-H) Posterior
distributions of the baseline sequencing success (𝛼0, C), dependence of sequencing success on viral load (log10 copies/mL) standardized to mean = 0 and stan-
dard deviation = 1. (𝛼1, D), standard deviation of per-individual sequencing success random effect (𝜎ind, E), the multiple subgraph false-negative rate (𝜆, F),
the multiple subgraph false-positive rate (𝜖, G), and the population prevalence of multiple infections ( ̄𝛿, H). Posterior distributions in (C-H) bins are shaded
according to the 95% and 50% HPD. Histogram bin width is calculated such that there are approximately 50 bins over the range of the plotted values. True values
are shown as vertical dotted lines.

https://doi.org/10.1371/journal.ppat.1013065.g002

p24 and gp41 regions as in previous studies (e.g. [2,29,30]), we were unable to estimate 𝜎ind
with suitably high effective sample size (ESS) values as there were at most two regions of data
for each sample. We therefore fixed 𝜎ind = 0.7 based on the whole-genome analysis (S9 Table.)
and found that that the sample prevalence of multiple infections based on p24 and gp41
was considerably lower as compared to the whole-genome analysis (2.31% [0.71%–4.94%],
S11 Table.), highlighting the utility of incorporating whole-genome data into our inference.
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Fig 3. Individual-level estimates and population-level characteristics of HIV multiple infection in people with
viremic HIV in the Rakai Community Cohort Study, 2010-2020. (A) Estimated posterior probability of multiple
infection for each participant. Confidence bounds represent the 95% highest posterior density. Participants with at
least one multiple subgraph window are shown in purple. (B) Number of participants with multiple infection as a
function of the threshold used to dichotomize the probability of multiple infection. Central estimate uses the median
estimated prevalence of multiple infections and shading uses 95% and 50% HPD. Horizontal dotted line plotted at
the number of participants needed to match the estimated population prevalence of multiple infection. (C) Posterior
distribution of the prevalence of multiple infections among viremic participants in the RCCS after accounting for
sampling biases. Bins are shaded according to the 95% and 50% HPD. Histogram width is calculated such that there
are approximately 50 bins over the range of the plotted values.

https://doi.org/10.1371/journal.ppat.1013065.g003

Finally, after adjusting for slight biases in the availability of sequence data among viremic par-
ticipants (Table 1) using post-stratification based on age, sex, and community type ( S4 Table),
the prevalence of multiple infections among viremic PLHIV in the RCCS was estimated
to be slightly lower than the prevalence in the sequenced sample (4.09% [2.95%–5.45%],
Fig 3C).

We next used our model to identify individuals with likely multiple infection based on
their within-host phylogenetic trees and our modeling framework. Classification was based
on the inferred, posterior multiple infection probabilities, and therefore our model-based
approach accounted for individual-level factors associated with sequencing success and
population-level false-postive and false-negative rates. We determined a binary classification
cut-off above which individuals were classified as having a likely multiple infection such that
the total number of identified individuals was consistent with the estimated prevalence in the
sample, which resulted in a cut-off of 3.5%. Using this threshold, we estimated there were 118
individuals with a likely multiple infection (Fig 3B).
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3.4. Risk factors of HIV multiple infection
In African contexts, HIV infection risk varies at the individual-level, such as by age, gender,
sexual behaviour and circumcision status, and at the community-level [35,36,41]. We there-
fore next aimed to characterize individual and population-level risk factors for multiple infec-
tion with HIV. First, given the significantly higher prevalence of HIV and viremic HIV in
Lake Victoria fishing communities [36,96], we investigated whether participants with viremic
HIV in these communities had increased risk of multiple infection as compared to partici-
pants with viremic HIV in inland communities. Using the model described above with age,
sex, and community type as predictors of the probability of multiple infection and account-
ing for sequencing biases through poststratificaiton we calculated the prevalence of multiple
infections among viremic PLHIV in fishing and inland communities and found that multiple
infections in fishing communities were 2.33 times (95% HPD 1.3–3.7)-times more frequent
than in inland communities (with posterior median [95% HPD] prevalence of multiple infec-
tion of 7.42% [5.62%–9.31%]) and 3.14% [1.8%–4.74%] respectively, Fig 4A and S9 Table.).
The estimated prevalence ratio for HIV multiple infection was therefore broadly comparable
to the risk ratio of HIV prevalence and viremia in fishing as compared to inland communi-
ties (2.5-3)[36,96], consistent with the expectation that the risk of superinfection acquisition
scales with the population prevalence of viremic HIV. Because participants from fishing com-
munities are oversampled in our sequence data (Tables 1 and S4), this also explains the lower
estimated prevalence of multiple infections in the population as compared to the sample.

We additionally incorporated a binary feature describing the sequencing technology used
to generate the deep-sequence data from each participant to assess the extent of technical
bias in our inferences. In a univariate analysis, we estimated that multiple infections were less
common among participants sequenced using the bait-capture protocol (RR median [95%
HPD]: 0.64 [0.4–0.94], S12 Table.). However, 50.45% of bait-capture sequenced participants
were residents of fishing communities compared to 76.02% of amplicon sequenced partic-
ipants. Consequently, in a bivariate model with community type, the estimated magnitude
of the dependence of multiple infection status on sequencing technology was considerably
reduced and no longer considered to be significant at the 95% level. (multivariate RR median
[95% HPD] 0.77 [0.48–1.12], S13 Table.).

Participants with HIV in fishing communities also reported having more lifetime sex part-
ners (S7 Fig), so we next assessed whether the risk of harboring a multiple infection differed
by the number of self-reported lifetime sex partners within each of the two community loca-
tions. As women tend to under-report their number of sex partners relative to men [97], we
restricted this analysis to male participants. The number of lifetime sexual partners generally
increases with age, and so we standardized responses relative to the age-specific mean number
of lifetime sexual partners among participants separately for the inland and fishing commu-
nities (S8 Fig). Among 997 male participants included in this analysis, 516 reported an exact
number of lifetime sex partners, 477 responded they had three or more lifetime partners, and
4 did not provide a response. We imputed ambiguous responses and missing data within our
inference framework by assuming responses were missing at random between people with
and without multiple infection (Materials and methods).

In a bivariate model with community type and number of lifetime sexual partners we did
not find a statistically significantly higher risk of multiple infection in male participants with
more lifetime sexual partners in the context of substantial missing data and sampling over
potential missing values using age-specific prior distributions. However, we note that the pos-
terior effect size translated into an estimated more than two-fold higher risk of multiple infec-
tion between men living with viremic HIV in fishing communities associated with having 30
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Fig 4. Risk factors of HIV multiple infection among people with viremic HIV in the Rakai Community cohort
Study, 2010-2020. (A) Posterior distribution of the prevalence of multiple infections stratified by community type,
accounting for sampling biases, estimated in a multivariate model (age, sex, and community type) with diffuse priors
(n = 2,029). Bins are shaded according to the 95% and 50% highest posterior density (HPD). Histogram width is
calculated such that there are approximately 50 bins over the range of plotted values. (B) Predicted risk of multiple
infection among men aged 25 to 29 years old as a function of lifetime sex partners and community type estimated in
a bivariate model with diffuse priors (n = 997). Median of the posterior distribution is plotted as the central estimate
and shading represents the 95% and 50% HPD. Colors are as in (A). (C) Logistic coefficients for the association
between putative risk factors and the probability of harboring a multiple infection estimated with Bayesian shrinkage
priors (n = 1,970). Sex and bar/rest. work variable includes female sex and bar/restaurant worker and men who report
having sex with female sex and bar/restaurant workers. Median of the posterior distribution is plotted as the central
estimate, horizontal bars extend to the 95% and 50% HPD. Colors are as in (A).

https://doi.org/10.1371/journal.ppat.1013065.g004

PLOS Pathogens https://doi.org/10.1371/journal.ppat.1013065 April 22, 2025 21/ 35

https://doi.org/10.1371/journal.ppat.1013065.g004
https://doi.org/10.1371/journal.ppat.1013065


ID: ppat.1013065 — 2025/5/6 — page 22 — #22

PLOS PATHOGENS Quantifying prevalence and risk factors of HIV multiple infection from deep-sequence data

lifetime sexual partners compared to one lifetime sexual partner (e.g. RR median [95% HPD]
among 25-29 year olds 2.47 [0.7–5.61], Figs 4B and S9 for all age groups and S14 Table.). Very
similar results were observed using a complete case analysis of the 516 men who provided an
exact number of lifetime sex partners (S15 Table.).

We also performed a comprehensive discovery-based risk factor variable selection analy-
sis over eight additive biological, behavioral and epidemic features, stratifying epidemiological
and behavioral variables by community type to account demographic differences between the
populations and excluding additional variable interactions. This analysis confirmed residency
in fishing communities as a risk factor of multiple infection among sequenced participants,
albeit with a wide credible interval, (multivariate RR median [95% HPD] 1.59 [0.92–2.85]),
but did not identify any other variables that were associated with significantly higher or lower
risk of multiple infection in our sample (Fig 4C and S16 Table.). Specifically, despite the fact
that female bar/restaurant workers face a three-fold higher risk of incident HIV [41] we did
not identify an increased risk of multiple infection among female bar/restaurant workers or
men who have sex with bar/restaurant workers in either inland or fishing communities.

4. Discussion
In this large-scale study, we assessed the prevalence and risk factors of HIV multiple infec-
tion in an East African setting with high HIV burden using population-based pathogen deep-
sequence surveillance data. To do this, we developed a Bayesian statistical model to iden-
tify multiple infections in deep-sequence phylogenies such as those generated by phyloscan-
ner [38]. Our model incorporates false-negative and false-positive rates for the presence of
genetically distinct viral variants and simultaneously estimates individual and population-
level probabilities of harboring multiple infection. This framework also allows for the iden-
tification of biological and epidemiological risk factors for harboring a multiple infection.
In simulation analyses, we demonstrated the ability of the model to generate accurate infer-
ences across a range of parameter values, and fitted the model to phyloscanner within-host
phylogenies inferred from HIV whole-genome RNA deep-sequence data collected between
January 2010 and November 2020 from 2,029 viremic participants in the Rakai Community
Cohort Study, a population-based open-cohort in southern Uganda. Among viremic partici-
pants in this study over the study period, the estimated prevalence of multiple infections was
approximately 4%, reflecting the prevalence of co-circulating multiple infections present at
time of sampling. Further, we showed that viremic participants with HIV living in high HIV
prevalence fishing communities along Lake Victoria were more than twice as likely to harbor
a multiple infection as compared to those living in inland agrarian or trading communities.
Among male residents in fishing communities, we estimated that those with more lifetime sex
partners can be expected to be more likely to have a multiple infection, although this finding
did not reach statistical significance at the 95% level.

This study represents the largest analysis of HIV multiple infections by more than an order
of magnitude [20] and rigorously accounts for partial sequencing success and uncertainty in
individual-level estimates when estimating population-level risk of multiple infection. Our
model indicated that in the context of incomplete genome coverage, as is common in HIV
whole-genome sequencing [33], evidence for multiple infections is expected to be observed in
only a subset of genome windows. However, we observed a high rate of false-negatives beyond
what is expected due to incomplete sequencing, which may be due to insufficient diversity of
infecting variants in some regions of the genome [95] to phylogentically distinguish them.
This could potentially be due to recombination between infecting variants prior to sampling
[4,5] such that infecting variants are only genetically distinct in some portions of genome
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when sampled. The population-based multiple infection prevalence estimates from the data
reported here are substantially more precise than previous estimates from this setting as
expected given the larger sample size and slightly higher than previous estimates (n = 7/149
[2]), likely primarily reflecting greater sensitivity of whole-genome sequencing data. Multi-
ple infection among inland community study participants in this study (3.14%) was slightly
less prevalent than in this earlier work (pre-2009, 4.7% [2]), consistent with reductions in
HIV incidence over the same time frame [35]. Previous studies of female sex workers in urban
Uganda and Kenya have estimated the prevalence of multiple infections to be as high as 14–
16% in this high-risk demographic based on amplicon deep-sequencing [30,31]. Here, we
do not replicate this finding using self-reported data on sex work or bar/restaurant work in
our population-based sampling framework. We expect this is likely due to hesitation to self-
report sex work among study participants and study participation bias among sex work-
ers. However, our results are generally consistent with previous findings suggesting multiple
infections are less common in African populations as compared to the United States (10–
15% in studies conducted between 1996 and 2010 [98–102]), which may reflect the fact that
the HIV epidemic in the United States is concentrated among men who have sex with men
(MSM) and people who inject drugs (PWID) as opposed to the generalized nature of the epi-
demic in Africa. Further, as the risk of HIV transmission given exposure is 8–16× and 3–17×
greater for needle-sharing and anal intercourse, respectively, as compared to vaginal inter-
course [103], the risk of multiple infection acquisition given exposure may also be signifi-
cantly greater in concentrated epidemics. To date, however, we note that the sample size of
HIV multiple infection studies in the United States are relatively small (<150 individuals) and
there is therefore significant uncertainty in the true underlying prevalence in these settings.

Our results add to considerable previous research on increased risk of HIV infection
among Lake Victoria fishing communities. Previous studies have shown that overall HIV
prevalence and prevalence of viremic HIV in these communities is 2.5–3× higher than in
inland communities [36,96], in part due to migration of PLHIV to these communities [104,
105]. Further, despite a rapid increase in antiretroviral therapy (ART) uptake among resi-
dents of fishing communities over the study period [106], there remains a higher prevalence
of people living with viremic, ART-resistant HIV as compared to inland communities [107].
We here show that viremic PLHIV in fishing communities also face a significantly higher
burden of HIV multiple infections. We also show that among men in fishing communities,
multiple infection risk increases with the number of lifetime sex partners. The precision of
this estimate is hindered by a large proportion of qualitative responses to this component
of the RCCS survey. These results imply that PLHIV in fishing communities continue to be
exposed to viremic partners following initial infection. Public health interventions directed
at viremic PLHIV in these communities may therefore not only provide life-saving treatment
to these individuals but also reduce opportunities for the generation of novel recombinant
forms of HIV which could pose challenges to control efforts through potential generation of
more transmissible variants and broadening the antigneic space that potential vaccines need
to cover [8–10,108–110].

We expect that our inferential framework may be adaptable to whole-genome deep-
sequence phylogenies from other pathogens in which infection is chronic (thereby allow-
ing sufficient time for superinfection to occur). Hepatitis C virus (HCV), which is a chronic
viral infection transmitted either sexually or by injection drug use, is a natural extension
[111]. Among people who inject drugs, the prevalence of HCV mixed infections is estimated
to be as high as 39% [112]. Our framework has the advantage that it uses data from across
the genome and does not require haplotyping of sequencing reads, which has proven to be
exceedingly difficult with short-read sequence data [113]. Recent work has also attempted to
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identify multiple infections ofMycobacterium tuberculosis (MTB), a chronic bacterial infec-
tion canonically of the lungs [114]. These methods work by either clustering allele frequen-
cies to distinguish within- and between-variant differences [115–117] or by comparing sam-
pled sequence data to a database of reference strains [118]. They therefore require defining
circulating genetic diversity a priori (which may be challenging in a poorly sampled epi-
demic) or assume independence between alleles, failing to account for linkage between adja-
cent genome positions and the evolutionary history giving rise to the observed genetic vari-
ation. Multiple infections may also be of interest in acute, high-prevalence infectious dis-
eases. For example, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) super-
infections have been observed by identifying mixed alleles as known lineage-defining sites
[119,120].

While deep-phyloMI builds upon previous investigations into HIV multiple infections to
provide more rigorous estimates of individual and population level parameters, we do rely on
some simplifying assumptions in our framework. First, we only identify multiple infections
among viremic participants with available deep-sequence data who were identified as part of
a putative transmission network. While we adjust for known sampling biases based on demo-
graphic characteristics, there may be residual bias such that our sample is non-representative
of the underlying population of viremic PLHIV. Further, because the RCCS did not per-
form viral load testing on all participants prior to the 2014 survey round we adjust only to
the demographic characteristics of viremic PLHIV in the four most recent surveys. Further,
we focus on identifying multiple infections only in cross-sectional sequence data. As mul-
tiple infections can be transient [31], we are unable to identify participants who have been
but are not currently multiply infected. It is likely that longitudinal sampling or sequencing
of the viral reservoir would identify additional individuals who have been multiply infected.
Further, with only a single sample per-individual we were unable to reliably identify factors
causally associated with incident multiple infection [121] and therefore report factors that are
associated with prevalent multiple infections. Similarly, in the absence of longitudinal data or
data sampled soon after initial infection we are unable to reliably distinguish multiple infec-
tions acquired through coinfection and superinfection. However, based on our parametriza-
tion of the k parameter within phyloscanner and the genetic distance between observed mul-
tiple subgraphs, we suspect that the vast majority of identified multiple infections are due
to superinfection with a genetically distinct viral genotype. More liberal values of k would
increase the sensitivity of our approach to identify closely related viral genotypes (such as
those acquired during co-infection) at the expense of an increased rate of false-positives.
Further, more liberal values of k would be appropriate in settings with less circulating HIV
genetic diversity as compared to our study site [7].

HIV multiple infections complicate global control efforts by fueling the generation of
genetic diversity [6], worsening clinical outcomes [15,16], and increasing viral load [16,31,
122]. Here we developed a robust inference framework to identify multiple infections in deep-
sequence data and assess the role of epidemiological risk factors, such as living in high burden
communities, in harboring multiple infections. This work will inform interventions aimed at
preventing the acquisition of HIV superinfections and efforts to model the role iof multiple
infections in the dynamics and evolution of HIV.

Supporting information
S1 Fig. Sequencing coverage among samples from 2,029 Rakai Community Cohort Study
participant-visits contributed by viremic people living with HIV with Nobs

i > 0, stratified
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by viral load category and sequencing technology. (A) Distribution of Nobs
i values for all

samples. (B) Number of samples with coverage in each of the 29 genome window.
(TIF)

S2 Fig. Pairwise genetic between unique tips in within-host phylogenetic trees among
people with viremic HIV in the Rakai Community Cohort Study, 2010-2020. Bins are
shaded based on whether tips were assigned to the same subgraph (grey) or different sub-
graphs (purple), in the case where multiple subgraphs were observed.
(TIF)

S3 Fig. Posterior distribution of parameters in full model fit to simulated data across a
range of 𝛿 values. Rows represent model to fit to simulated data with 𝛿 = 0 (top row), 𝛿 = 5%
(second row), 𝛿 = 10% (third row), and 𝛿 = 20% (bottom row). Posterior distributions bins are
shaded according to the 95% and 50% highest posterior density. Histogram width is calcu-
lated such that there are approximately 50 bins over the range of plotted values. True values
are shown as vertical dotted lines. VL = viral load (log10 copies/mL) normalized to mean = 0
and std. dev = 1. Std. dev. = standard deviation.
(TIF)

S4 Fig. Posterior distribution of parameters in full model fit to simulated data across
a range of 𝜆 values. Rows represent model to fit to simulated data with 𝜆 = 0.1 (top row),
𝜆 = 0.2% (second row), 𝜆 = 0.3% (third row), and 𝜆 = 0.4% (bottom row). Posterior distribu-
tions bins are shaded according to the 95% and 50% higheset posterior density. Histogram
bin width is calculated such that there are approximately 50 bins over the range of the plot-
ted values. True values are shown as vertical dotted lines. VL = viral load (log10 copies/mL)
normalized to mean = 0 and std. dev = 1. Std. dev. = standard deviation.
(TIF)

S5 Fig. Posterior distribution of parameters in full model fit to simulated data across a
range of 𝜖 values. Rows represent model to fit to simulated data with 𝜖 = 0 (top row), 𝜖 = 0.5%
(second row), 𝜖 = 1% (third row), and 𝜖 = 5% (bottom row). Posterior distributions bins are
shaded according to the 95% and 50% higheset posterior density. Histogram bin width is cal-
culated such that there are approximately 50 bins over the range of the plotted values. True
values are shown as vertical dotted lines. VL = viral load (log10 copies/mL) normalized to
mean = 0 and std. dev = 1. Std. dev. = standard deviation.
(TIF)

S6 Fig. Individual-level estimate of HIV multiple infection in people living with viremic
HIV in the Rakai Community Cohort Study, 2010-2020. Estimated posterior log10 proba-
bility of multiple infection for each participant. Confidence bounds represent the 95% high-
est posterior density. Participants with at least one multiple subgraph window are shown in
purple.
(TIF)

S7 Fig. Mean number of lifetime sex partners stratified by HIV serostatus, sex, community
type, and age among 109,608 RCCS participant-visits. Excludes participant visits in which
respondents provided a categorical response (N = 5,436 (10.67%)).
(TIF)

S8 Fig. Standardization curve used to adjust observed number of lifetime sex partners
among men for age-cohort effects. Includes simple imputation of categorical responses
(e.g. “1-2” and “3+”) to 1) the mean value of observed responses of 1 or 2 (“1-2”) within age
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category and community type and 2) the mean of a lognormal distribution fit to observed
responses of ≥ 3 lifetime sex partners within age category and community type.
(TIF)

S9 Fig. Posterior estimates of the prevalence of multiple infections, stratified by age cat-
egory and community type.Median estimate is plotted as a line and shading represents
the 50% and 95% highest posterior densities. All age categories share the same coefficient
estimates but differ because lifetime sex partner values are standardized to the mean of the
observed values within groups defined by sex, age category, and community type.
(TIF)

S1 File. Supplementary methods.
(PDF)

S2 File. Reference genomes included in the phyloscanner analysis.
(TXT)

S3 File. Normalization constants used to adjust branch lengths in within-host phyloge-
netic trees.
(CSV)

S4 File. Sensitivity of results to choice of genome windows.
(PDF)

S1 Table. Count of participants sequenced using each sequencing protocol.
(PDF)

S2 Table. Characteristics of Rakai Community Cohort Study participant, 2010–2020. For
each participant, includes data from the participant-visit processed with PHSC if applica-
ble or the participant-visit with the highest viral load, using the first visit in the case of ties
or for people not living with HIV. Percentages represent the row percentages within each
category. Binomial confidence intervals were calculated using the Agresti–Coull method.
PHSC = phyloscanner.
(PDF)

S3 Table. Count of missing values among 50,967 RCCS participants. For each participant,
includes data from the participant-visit processed with PHSC if applicable or the participant-
visit with the highest viral load, using the first visit in the case of ties or for people not living
with HIV. In each category the percentage represents the percentage of all participants or all
participants that were viremic and processed with PHSC.
(PDF)

S4 Table. Viremic participant-visits (2014–2019) and participants with available phy-
loscanner output belonging to epidemiological strata in the Rakai Community Cohort
Study. Epidemiological strata are defined by community type, age category, and sex. As
viral load testing was not routinely conducted in earlier study rounds, the viremic partici-
pants belonging to each strata were tabulated using only data from the 2014 through 2019
surveys.
(PDF)

S5 Table. Parameter estimates for base model fit to base simulated data. ESS = effective
sample size. HPD = highest posterior density.
(PDF)
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S6 Table. Parameter estimates for base model fit to full simulated data. ESS = effective
sample size. HPD = highest posterior density.
(PDF)

S7 Table. Parameter estimates for full model fit to full simulated data. ESS = effective sam-
ple size. HPD = highest posterior density.
(PDF)

S8 Table. Parameter estimates for extended model fit to extended simulated data with epi-
demiological risk factor of multiple infection. ESS = effective sample size. HPD = highest
posterior density. stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)

S9 Table. Parameter estimates for full model fit to deep-sequence data from 2,029 RCCS
participants living with viremic HIV with age, sex, and community type as putative risk
factors for harboring multiple infections ESS = effective sample size. HPD = highest poste-
rior density. stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)

S10 Table. Parameter estimates for full model fit to deep-sequence data from 2,029 RCCS
participants living with viremic HIV with age, sex, and community type as putative risk
factors for harboring multiple infections. Includes minor subgraphs supported in < 1% of
reads in a given window so long as they are supported by at least three reads. ESS = effective
sample size. HPD = highest posterior density. stz-MVN = sum-to-zero multivariate Normal
distribution.
(PDF)

S11 Table. Parameter estimates for full model fit to deep-sequence data from 1,742 RCCS
participants living with viremic HIV with age, sex, and community type as putative risk
factors for harboring multiple infections. Includes data from genome windows spanning the
p24 (1427–1816) and gp41 (7941–8264) regions. ESS = effective sample size. HPD = highest
posterior density. stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)

S12 Table. Parameter estimates for full model fit to deep-sequence data from 2,029 RCCS
participants living with viremic HIV with deep-sequencing protocol as a putative risk fac-
tor for harboring multiple infections. ESS = effective sample size. HPD = highest posterior
density. stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)

S13 Table. Parameter estimates for full model fit to deep-sequence data from 2,029
RCCS participants living with viremic HIV with community type and deep-sequencing
protocol as putative risk factors for harboring multiple infections ESS = effective sam-
ple size. HPD = highest posterior density. stz-MVN = sum-to-zero multivariate Normal
distribution.
(PDF)

S14 Table. Parameter estimates for full model fit to deep-sequence data from 997 men who
participated in the RCCS living with viremic HIV with community type and number of
lifetime sex partners as putative risk factors for harboring multiple infections adjusted
for deep-sequencing protocol. ESS = effective sample size. HPD = highest posterior density.
stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)
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S15 Table. Parameter estimates for full model fit to deep-sequence data from 516 men
who participated in the RCCS living with viremic HIV with community type and num-
ber of lifetime sex partners as putative risk factors for harboring multiple infections.
Excludes participants with ambiguous or missing data on the number of lifetime sex partners.
ESS = effective sample size. HPD = highest posterior density. stz-MVN = sum-to-zero multi-
variate Normal distribution.
(PDF)

S16 Table. Parameter estimates for full model fit to deep-sequence data from 1,970 RCCS
participants living with viremic HIV with putative risk factors for harboring multiple
infection and Bayesian shrinkage priors. ESS = effective sample size. HPD = highest poste-
rior density. stz-MVN = sum-to-zero multivariate Normal distribution.
(PDF)
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