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Epidemiological inference for emerging
viruses using segregating sites

Yeongseon Park 1, Michael A. Martin 1,4 & Katia Koelle 2,3

Epidemiologicalmodels are commonly fit to case and pathogen sequence data
to estimate parameters and to infer unobserved disease dynamics. Here, we
present an inference approach based on sequence data that is well suited for
model fitting early on during the expansion of a viral lineage. Our approach
relies on a trajectory of segregating sites to infer epidemiological parameters
within a Sequential Monte Carlo framework. Using simulated data, we first
show that our approach accurately recovers key epidemiological quantities
under a single-introduction scenario. We then apply our approach to SARS-
CoV-2 sequence data from France, estimating a basic reproduction number of
approximately 2.3-2.7 under an epidemiologicalmodel that allows formultiple
introductions. Our approach presented here indicates that inference approa-
ches that rely on simple population genetic summary statistics can be infor-
mative of epidemiological parameters and can be used for reconstructing
infectious disease dynamics during the early expansion of a viral lineage.

Phylodynamic inference methods use pathogen sequence data to
estimate epidemiological quantities such as the basic reproduction
number and to reconstruct epidemiological patterns of incidence and
prevalence. These inference methods have been applied to sequence
data across a broad range of RNA viruses, including HIV1–4, Ebola
virus5–7, dengue viruses8, influenza viruses9, and most recently severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)10–12. Most
commonly, phylodynamic inference methods rely on underlying coa-
lescent models or birth-death models. Coalescent-based approaches
have been generalized to accommodate time-varying population sizes
and structured epidemiological models, for example, susceptible-
exposed-infected-recovered (SEIR) models and models with spatial
subdivision6, 13. Birth-death approaches14,15, where a birth in the context
of infectious diseases corresponds to a new infection and death cor-
responds to a recovery from infection, carry advantages such as cap-
turing the role of demographic stochasticity in disease dynamics,
which may be particularly important in emerging diseases that start
with low infection numbers16. Birth-death approaches have also been
expanded to incorporate the complex nature of infectious disease
dynamics including structured populations17. Both coalescent-based
and birth-death phylodynamic inference approaches rely on time-

resolved phylogenies and have been incorporated into the phyloge-
netics software packages BEAST118 and BEAST219 to allow for joint
estimation of epidemiological parameters and dynamics while inte-
grating over phylogenetic uncertainty6,20. Integrating over phyloge-
netic uncertainty is crucial when applying these methods to viral
sequencedata that are sampledover a shortperiodof timeand contain
only low levels of genetic diversity. However, integrating over phylo-
genetic uncertainty can be computationally intensive. Moreover,
phylodynamic approaches that use reconstructed trees for inference
require estimation of parameters associated with models of sequence
evolution, along with parameters that are of more immediate epide-
miological interest.

Here, we present an alternative sequence-based statistical infer-
ence method that may be particularly useful when viral sequences are
sampled over short time periods and when phylogenetic uncertainty
present in time-resolved viral phylogenies is considerable. Instead of
relying on viral phylogenies to infer epidemiological parameters or to
reconstruct patterns of viral spread, the “tree-free” method we pro-
pose here fits epidemiological models to time series of the number of
segregating sites (that is, the number ofpolymorphic sites) present in a
sampled viral population. The approach we propose here allows for
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structured infectious disease models to be considered in a straight-
forward “plug-and-play” manner. It also incorporates the effect that
demographic noise has on epidemiological dynamics. Below, we first
describe how segregating site trajectories are calculated using
sequence data and how they are impacted by sampling effort, rates of
viral spread, and transmission heterogeneity. We then describe our
proposed statistical inferencemethodand apply it to simulateddata to
demonstrate the ability of this method to infer epidemiological para-
meters and to reconstruct unobserved epidemiological dynamics.
Finally, we apply our segregating sites method to SARS-CoV-2
sequence data from France, arriving at quantitatively similar para-
meter estimates to those arrived at using epidemiological data.

Results
Segregating site trajectories are informative of epidemiological
dynamics
The number of segregating sites present in a set of sampled viral
sequences is defined as the number of nucleotide sites at which
genetic variation is present in the sample set. To determine whether
the number of segregating sites that are observed over time in a viral
population may be informative of underlying epidemiological
dynamics, we forward-simulated a classic susceptible-exposed-
infected-recovered (SEIR) epidemiological model, augmented with
viral evolution, under various sampling efforts and parameterizations
(Fig. 1; Methods). Simulations of this augmented SEIR model, initi-
alized with a single infected individual, first indicate that segregating
site trajectories are sensitive to sampling effort, as expected (Fig. 1a, b).
More specifically, we considered three different sampling strategies,
each with sequences binned in consecutive, nonoverlapping 4-day
time windows to calculate segregating site trajectories. These three
sampling strategies consisted of a strategywith full sampling effort (all
sequences per 4-day time window), one with dense sampling effort

(40 sequences per 4-day time window) and one with sparse sampling
effort (20 sequences per 4-day time window). With all three of these
sampling efforts, the number of segregating sites first increases as the
epidemic grows, with mutations accumulating in the virus population.
Following the peak of the epidemic, the number of segregating sites
starts to decline as viral sublineages die out, reducing the amount of
genetic variation present in the viral population. A comparison
between full, dense, and sparse sampling efforts indicates that low-
ering sampling effort results in a lower number of observed segre-
gating sites during any timewindow. This is because at lower sampling
effort, less of the genetic variation present in a viral population over a
given time window is likely to be sampled. The patterns shown here
across sampling strategies are robust to the time window length used
for the calculation of segregating site trajectories (Figure S1).

To assess whether segregating site trajectories could be used for
statistical inference, we first considered whether these trajectories
differed between epidemics governed by different basic reproduction
numbers (R0 values). Figure 1c shows simulations of the SEIR model
under two parameterizations of the basic reproduction number: an R0

of 1.6, corresponding to the simulation shown in Fig. 1a, and ahigherR0

of 2.0 (implemented via a higher transmission rate β). The epidemic
with the higherR0 expandedmore rapidly (Fig. 1c) and, under the same
sampling effort, resulted in a more rapid increase in the number of
segregating sites (Fig. 1d). This indicates that segregating site trajec-
tories can be informative of R0 early on in an epidemic.

We next considered the effect of transmission heterogeneity on
segregating site trajectories. Many viral pathogens are characterized
by ‘superspreading’ dynamics, where a relatively small proportion of
infected individuals are responsible for a large proportion of second-
ary infections21. The extent of transmission heterogeneity is often
gauged relative to the 20/80 rule (where the most infectious 20% of
infected individuals are responsible for 80% of the secondary cases22).

Fig. 1 | Segregating site trajectories under simulated epidemiological dynam-
ics. aDynamics of infected individuals (I) under an SEIRmodel simulatedwith anR0
of 1.6. b Segregating site trajectories under full (black dashed line), dense (black
lines), and sparse (gray lines) sampling efforts. Dense and sparse sampling corre-
spond to 40 and 20 sequences sampled per timewindow, respectively. c Simulated
infected dynamics under the SEIR model with an R0 of 2.0 (blue line) compared to
those of the R0 = 1.6 simulation (black line). d Segregating site trajectories for the
two simulations shown in panel c. e Simulated infected dynamics under the SEIR
model with transmission heterogeneity (green, dashed line) compared to those of
the R0 = 1.6 simulation (black line) without transmission heterogeneity. Transmis-
sion heterogeneity was included by setting the parameter ph to 0.06. For ease of
comparing segregating site trajectories, the transmission heterogeneity simulation
was shifted later in time (green, solid line). f Segregating site trajectories for the
shifted transmission heterogeneity simulation (green lines) and the original

simulation (black lines). g Simulated infected dynamics under the SEIR model with
changing R0. In the simulations shown in red and yellow, when the number of
infected individuals reached 400, R0 was decreased to 1.1 and 0.75, respectively.
The simulation in black has R0 remaining at 1.6. h Segregating site trajectories for
the three simulations shown in panel g. Dense sampling effortwas used to generate
all segregating site trajectories shown in panels d, f, and h. 30 randomly-sampled
segregating site trajectories are shown for each sampling effort in panel b and for
each epidemiological scenario in panels d, f, and h. In all model simulations,
γE = 1=2 days−1, γI = 1=3 days−1, population size N = 105, and the per genome, per
transmission mutation rate μ =0.2. Initial conditions are S(t0) =N-1, E(t0) = 0,
I(t0) = 1, and R(t0) = 0. For the transmission heterogeneity simulation (panel e),
Ih(t0) = 1 and Il(t0) = 0 was used instead of I(t0) = 1. A time step of τ =0.1 days was
used in the Gillespie τ -leap algorithm.
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Some pathogens like SARS-CoV-2 exhibit extreme levels of super-
spreading, with as low as 10-15% of infected individuals responsible for
80% of secondary cases10,23–25. Because transmission heterogeneity is
known to impact patterns of viral genetic diversity26, we simulated the
above SEIR model with transmission heterogeneity to ascertain its
effects on segregating site trajectories (Methods). Because transmis-
sion heterogeneity has a negligible impact on epidemiological
dynamics once the number of infected individuals is large27, epide-
miological dynamics with and without transmission heterogeneity
should be quantitatively similar to one another, with transmission
heterogeneity simply expected to shorten the timing of epidemic
onset in simulations with successful invasion21. Our simulations, para-
meterized with extreme transmission heterogeneity of 6/80, confirm
this pattern (Fig. 1e). To compare segregating site trajectories between
these simulations, we therefore shifted the simulation with transmis-
sion heterogeneity later in time such that the two simulated epidemics
peaked at similar times (Fig. 1e). Comparisons of segregating site tra-
jectories between these simulations indicated that transmission het-
erogeneity decreased the number of segregating sites during every
time window (Fig. 1f). As expected, lower levels of transmission het-
erogeneity result in less substantial decreases in the number of seg-
regating sites (Figure S2). Together, these results indicate that
transmission heterogeneity needs to be taken into considerationwhen
estimating epidemiological parameters using segregating site
trajectories.

Finally, we wanted to assess whether changes in R0 over the
course of an epidemic would leave signatures in segregating site tra-
jectories. We considered this scenario because phylodynamic infer-
ence has often been used to quantify the effect of public health
interventions onR0,most recently in the context of SARS-CoV-210,11.We
thus implemented simulations with R0 starting at 1.6 and then either
remaining at 1.6 or reduced to either 1.1 or 0.75 when the number of
infected individuals reached 400 (Fig. 1g). The segregating site tra-
jectories for these three simulations indicate that reductions inR0 over
the course of an epidemic leave signatures in this summary statistic of
viral diversity (Fig. 1h). The signatures left in the segregating site tra-
jectories reflect the epidemiological dynamics that result from the
reductions in R0. Reducing R0 to 1.1 results in a slower increase in the
number of cases and a delayed, as well as broader, epidemic peak; as
such, the number of segregating sites increases more slowly and the
decline in the number of segregating sites is not apparent over the
time period shown. Reducing R0 to 0.75 results in an immediate

decline in cases, with an observed drop in the number of segregating
sites due to the stochastic loss of viral sublineages. Similar magnitude
reductions in R0 that were implemented later on in the simulated
epidemic yielded fainter signatures of this effect in the segregating site
trajectories (Figure S3).

Epidemiological inference using segregating site trajectories
To examine the extent to which inference based on segregating sites
can be used for epidemiological parameter estimation, we generated a
mock segregating site trajectory by forward simulating an SEIR model
with an R0 of 1.6. From this simulation, we randomly sampled 500 viral
sequences (corresponding to approximately 0.78% of infections being
sampled) and binned these sequences into 4-day time windows based
on their sampling times (Fig. 2a). Figure 2b shows the segregating site
trajectory from these binned sequences. From this trajectory, we first
attempted to estimate only R0 under the assumption that the timing of
the index case t0 is known (Methods).We estimated an R0 value of 1.58
(95%confidence interval of 1.37 to 1.81; Fig. 2c), demonstrating thatour
segregating sites inference approach applied to this simulated dataset
is able to recover the true R0 value of 1.6. Lower levels of sampling
effort (100 viral sequences) resulted in an R0 estimate to 1.65 and a
broader 95% confidence interval (1.30 to 2.06; Figure S4). Instead of
random sampling of sequences, adopting a more uniformly dis-
tributed sampling strategy acted to reduce the uncertainty in the R0

estimate (Figure S5). In Figure S6,wepresent results for the same set of
sequences as those used in Fig. 2, with the sequence data binned
instead in time windows of 1 day, 2 days, 6 days, and 10 days, rather
than in a time window of 4 days. These results show that R0 estimates
are not biased by the use of different time window lengths.

Because the timing of the index case t0 (in cases with a single
introduction) is almost certainly not known for an emerging epidemic,
we further attempted to estimate both R0 and t0 using the segregating
site trajectory shown in Fig. 2b. We considered a range of R0 values
between 1.0 to 2.5 and a broad range of t0 starting 50 days prior to the
true start date of 0 and ending at the date of the first sampled
sequence. We divided this parameter space into fine-resolution para-
meter combinations (R0 intervals of 0.1 and t0 intervals of 2 days) and
ran 20 SMC simulations for every parameter combination. In Fig. 3a,
we plot the mean value of the 20 SMC log-likelihoods for every para-
meter combination in the considered parameter space. Examination of
this plot indicates that there is a log-likelihood ridge that runs between
early t0/low R0 parameter sides, indicating that inference using

Fig. 2 | Epidemiological inference on a simulated trajectory of segregating
sites. a, top The number of sampled sequences over time, binned by 4-day time
windows. Samplingwas done in proportion to the number of individuals recovering
in a time window. In all, 500 sequences were sampled over the course of the
simulated epidemic. a, bottom The proportion of sampled individuals in each time
window, obtained by dividing the number of sampled individuals by the number of
individuals who recovered during a time window. b Simulated segregating site
trajectory from the sampled sequences, by time window. c Estimation of R0 using
Sequential Monte Carlo (SMC). Points show log-likelihood values from different
SMC simulations. R0 values between 1.0 and 1.25 and between 2.0 and 2.5 were
considered with a step size of 0.1. R0 values between 1.25 and 2.0 were considered

with a step size of 0.01. Solid black curve shows themean of 20data points for each
R0 value. The vertical red dashed line shows the maximum likelihood estimate
(MLE) ofR0. The redband shows the95%confidence interval ofR0. The vertical blue
line shows the true value of R0 = 1.6. The MLE and 95% CI were obtained using the
mean log-likelihood values. The 95% CI band included the set of R0 values with log-
likelihoods that fellwithin 1.92units of the highestmean log-likelihoodvalue, based
on a chi-squared distribution with 1 degree of freedom. Model parameters for the
simulateddata set are:R0 = 1.6, γE =

1/2days−1, γI = 1/3days−1, population sizeN = 105,
t0 = 0, and the per genome, per transmission mutation rate μ =0.2. Initial condi-
tions are S(t0) =N-1, E(t0) = 0, I(t0) = 1, and R(t0) = 0. A time step of τ =0.1 days was
used in the Gillespie τ -leap algorithm.
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segregating site trajectories can in principle estimate both t0 and R0.
The parameter combination with the highest mean log-likelihood was
R0 = 1.7 and t0 = 16 days, with the true parameter combination of
R0 = 1.6 and t0 = 0 days falling within the 95% confidence region of the
estimated parameters. Our results therefore indicate that joint esti-
mation of these parameters is thus possible in cases where a single
introduction is responsible for igniting local circulation. Using our
estimates of R0 and t0, we reconstructed the dynamics of the segre-
gating sites (Fig. 4a) and unobserved state variables: the number of
susceptible, exposed, and infected individuals over time (Fig. 4b-d).
These reconstructed state variables captured the true epidemiological
dynamics, demonstrating that our segregating sites approach can be
used to infer epidemiological variables that generally go unobserved.

As mentioned in the Introduction, there are existing phylody-
namic inference approaches available that can estimate epidemiolo-
gical model parameters using viral phylogenies that have been
reconstructed from sequence data. Of particular note is the
coalescent-based inference approach developed by Volz13 that has
been implemented as PhyDyn6 in BEAST2. To compare our results
using the segregating sites approach to results using PhyDyn, we
generated mock viral nucleotide sequences from our set of 500 sam-
pled sequences (Methods) and used these nucleotide sequences as
input into PhyDyn. Assuming the same epidemiological model struc-
ture and using uninformative priors, PhyDyn was similarly able to

recover the true R0 value of 1.6 used in the forward simulation (Fig. 3b;
95% credible interval = 1.44 to 1.61). Because PhyDyn infers epide-
miological parameters using a tree-based method, the program does
not estimate the time of the index case t0. Instead, it estimates the time
of the most recent common ancestor (tMRCA) of the viral phylogeny.
The credible interval of PhyDyn’s tMRCA estimate spanned from
−26.89 to 1.87 days post the true time of the index case (t0 = 0). Times
of a most recent common ancestor, however, are generally later (and
never earlier) than the time of the index case. This is because some
viral lineages likely go unsampled and the pruning of these unsampled
lineages results in a tMRCA that canbe considerably later than the time
of the index case t028. As such, interpretation of the PhyDyn results
would almost certainly result in timing the index case t0 as less than 0
(too early), given 1.87 days as the top end of the tMRCA credible
interval. This potentially early estimate of t0 may be due to the “push-
of-the-past” effect29, which results from the assumption of determi-
nistic dynamics in the inference process when the underlying popu-
lation dynamics are stochastic (and conditioned on the persistence of
a lineage). This “push-of-the-past” effect is usually reflected in an
overestimate of the growth rate (or an overestimate in R0) in
coalescent-based inference approaches that are applied to datasets
with small population sizes during their exponential growth phase16.
Here, because R0 controls not only the rate of increase in the number
of infected individuals at the start of the simulated epidemic but also

Fig. 4 | Reconstruction of unobserved state variables. a Simulated trajectory of
the number of segregating sites (dashed red), alongside reconstructed trajectories
of the number of segregating sites (gray). b Simulated dynamics of susceptible
individuals (dashed red), alongside reconstructed dynamics of susceptible indivi-
duals (gray). c Simulated dynamics of exposed individuals (dashed red), alongside
reconstructed dynamics of exposed individuals (gray). d Simulated dynamics of
infected individuals (dashed red), alongside reconstructed dynamics of infected
individuals (gray). Reconstructed state variables were obtained by running the

particle filter using R0 and t0 parameter values randomly sampled from within the
95% CI region, with a further condition that the log-likelihood from the run
exceeded the 95% CI region log-likelihood cutoff shown in Fig. 3a. To show that
resampling of particles during the SMC performs effectively, we show in Figure S7
the dynamics of these unobserved state variables in particles that are sampled at
different time points during the SMC procedure that may be lost by the end of the
simulation as a result of resampling.

Fig. 3 | Joint estimation of the basic reproduction number (R0) and the timing
of the index case (t0) using simulated data, and comparison against PhyDyn.
a The log-likelihood surface based on the segregating site trajectory shown in
Fig. 2b is shown over a range of R0 and t0 parameter combinations. The log-
likelihood value shown in each cell is themean log-likelihood value calculated from
20 SMC simulations. Blank cells yielded mean log-likelihood values of negative
infinity. The red boundary shows the set of (R0, t0) values that fall within the 95%

confidence region. Parameter combinations within the red boundary have mean
log-likelihood values that fall within 2.996 units of the highest mean log-likelihood
value, based on a chi-squared distribution with 2 degrees of freedom. b Joint
density plot for R0 and the time of the most recent common ancestor (tMRCA), as
estimated using PhyDyn6 on the same set of 500 sampled sequences. Dashed red
line in the joint density plot shows the 95% HPD interval of the joint density.
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the time at which the simulated epidemic starts to decline, the “push-
of-the-past” effect may instead be reflected in a tMRCA estimate that
likely occurs too early. Because our inference approach implements
stochastic population dynamics, it appropriately accounts for the
push-of-the-past effect, as dophylodynamic inference approaches that
incorporate stochastic population dynamics (e.g., birth-deathmodels).

Because the impetus for developing the segregating sites infer-
ence approach was based on the extent of phylogenetic uncertainty
present early on in an epidemic, we re-applied the inference approach
to sequences sampled early on during the simulated epidemic, with
time window bins ending on days 36, 40, 44, 48, and 52 (Fig. 5a).
During each of these five-time windows, we sampled 10 sequences,
resulting in a total of 50 sampled sequences. Our results on this subset
of simulated data indicate that R0 and t0 could again be jointly esti-
mated, although the confidence intervals for R0 and t0 were both
considerably broader, as expected with a much shorter time series
(Fig. 5b). Similarly, on this same subset of data, PhyDyn’s 95% credible
intervals were considerably broader (95% credible interval forR0 = 1.48
to 10.80). For this particular time series, both the segregating sites
approach and PhyDyn tended to overestimate the true value of R0 = 1.6
(Figs. 5b, 5c). For PhyDyn, the “push-of-the-past” effect29 may have
contributed to the overestimation of R0.

To determine whether there might be an upwards bias in the
estimation of R0 using the segregating sites approach, we simulated an
additional short dataset under the same epidemiological model
structure and model parameterization, with the exception of the
mutation rate μ, which we increased from 0.2 to 0.4. To calculate the
segregating sites trajectory, we sampled from this simulation aswe did
for Fig. 5a–c, with 10 sequences sampled in each of the five time win-
dows (Figure S8a). The maximum likelihood estimates of R0 using our
segregating sites approach did not overestimate the true R0 of 1.6 in
this dataset, although the timeof the index casewas again estimated to
be slightly later than the true value of t0 = 0 (Figure S8b). Compared to
the results on the μ =0.2 short dataset (Fig. 5b), the 95% confidence
region spanned over a similar extent of parameter space. PhyDyn also
did not overestimate R0 on this μ =0.4 short dataset (Figure S8c).
Moreover, its 95% credible interval was considerably smaller than on
the μ =0.2 short dataset. This result makes sense: at higher mutation
rates, phylogenetic uncertainty is reduced and tree-based inference
approaches are expected to improve. In contrast, a low-dimensional

summary statistic, such as the number of segregating sites cannot take
advantage of the higher-dimensional structure present in the
sequence data.

Epidemiological inference using SARS-CoV-2 sequences from
France
We applied the segregating sites inference approach to a set of SARS-
CoV-2 sequences sampled from France between January 23, 2020, and
March 17, 2020 (the date on which a country-wide lockdown began).
We decided to apply our approach to this set of sequences for several
reasons. First, many of the 479 available full-genome sequences from
France over this time period appear to be genetically very similar to
one another30, indicating that one major lineage took off in France (or
at least, that most sampled sequences derived from one major line-
age). This lineage would be the focus of our analysis. Second, an in-
depth epidemiological analysis previously inferred R0 for France prior
to the March 17 lockdown measures that were implemented31. That
analysis fit a compartmental infectious disease model to epidemiolo-
gical data that included case, hospitalization, and death data. Because
our segregating sites inference approach can accommodate epide-
miological model structures of arbitrary complexity, we could adopt
the samemodel structure as in this previous analysis.We could also set
the epidemiological parameters that were assumed fixed in this pre-
vious analysis to their same values. By controlling for model structure
and the set of model parameters assumed as given, we could ask to
what extent sequence data corroborate the R0 estimates arrived at
from detailed fits to epidemiological data.

To apply our segregating sites approach to the viral sequences
from France, we first identified the subset of the 479 sequences that
constituted a single, large lineage. To keep with the “tree-free”
emphasis of our approach, we identified this subset of sequences
(n = 432) without inferring a phylogeny (Methods). Using phylogenetic
inference, however, we confirmed that our subset of sequences con-
stituted a single clade, with sequences from France falling outside of
this clade being excluded (Figure S9). To generate a segregating site
trajectory from these sequences, we defined 4-day time windows such
that the last time window ended on March 17, 2020. Figure 6a
shows the number of sequences falling into each time window.
Figure 6b shows the segregating site trajectory calculated from these
sequences.

Fig. 5 | Joint estimation of the basic reproduction number (R0) and the timing
of the index case (t0) using early samples from the simulation, with compar-
ison against PhyDyn. a Simulated trajectory of the number of segregating sites
using early sequences. Sequences were binned into 4-day windows, with 10 indi-
viduals sampled from each time window. b The log-likelihood surface based on a
segregating site trajectory shown in panel (a). As in Fig. 3a, the log-likelihood value
shown in each cell is the mean log-likelihood value calculated from 20 SMC
simulations and the 95% CI boundary shown in red contains sets of parameter

combinations that fall within 2.966 log-likelihood units of the maximum log-
likelihood. Blank cells had mean log-likelihood values of negative infinity. (c) Joint
density plot for R0 and the time of the most recent common ancestor (tMRCA), as
estimatedusing PhyDyn6 on the same set of 50 sampled sequences. Dashed red line
in the joint density plot shows the 95%HPD interval of the joint density. ForR0, only
the lower bound of the 95%HPD is shown as the upper bound is above 6. In panels
a through c, simulations were parameterized with a per genome, per transmission
mutation rate of μ =0.2.
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Weparameterized themodelwith a per genome, per transmission
mutation rate μ using consensus sequence data from established
SARS-CoV-2 transmission pairs that were available in the literature32–35

(Methods). Specifically, for each of the 87 transmission pairs we had
access to, we calculated the nucleotide distance between the con-
sensus sequence of the donor sample and that of the recipient sample
and fit a Poisson distribution to these data (Fig. 6c). Using this
approach, we estimated a μ value of 0.33, corresponding approxi-
mately to one mutation occurring every 3 transmission events.

Similar to the approachweundertookwith our simulated data, we
first attempted to jointly estimate R0 and the timing of the index case
t0 for this segregating site trajectory. We considered a broad para-
meter space over which to calculate log-likelihood values. Specifically,
we considered R0 values between 1.0 and 4.5 and t0 values of between
December 1st, 2019 and February 14th, 2020. We ran 10 SMC simula-
tions and calculated the mean log-likelihood for each parameter
combination (Fig. 7). We estimated R0 to be 3.0 (95% confidence
interval = 1.6 to 4.2), consistent with the R0 estimate of 2.9 (95% con-
fidence interval = 2.81 to 3.01) arrived at through epidemiological time

series analysis31. We estimated t0 to be February 8th, 2020 (95% con-
fidence interval = December 25, 2019, to February 14, 2020).

We decided to further consider an alternative model that allowed
for multiple introductions of the focal lineage into France (Methods).
This decisionwas based on evolutionary analyses that have shown that
regional SARS-CoV-2 epidemics in Europe (as well as in the United
States) were initiated through multiple introductions rather than only
a single one36. Instead of attempting to jointly estimate R0 and t0, we
attempted to jointly estimate R0 and a parameter η using the segre-
gating site trajectory. The parameter η quantifies the extent to which
transmission between France and regions outside of France is reduced
relative to transmission occurring within France. This model further
required specification of the time at which the basal genotype evolved
outside of France, which we refer to as te. We considered a broad
parameter space over which to calculate log-likelihood values (R0

values between 1.0 and 4.0 and η values between 10−8 and 10−1) and
three different te values: December 24, 2019, January 1, 2020, and
January 8, 2020 (Methods). At each of these te values, we ran 10 SMC
simulations and calculated themean log-likelihood for each parameter
combination (Fig. 8a–c). We estimated R0 to be 2.6 (95% CI = 2.0 to
4.0), 2.7 (95% CI = 2.0 to 4.0), and 2.3 (95% CI = 2.1 to 4.0), respectively,
under te = December 24, 2019, January 1, 2020, and January 8, 2020.
These results indicate that the inferred R0 values are relatively insen-
sitive to the assumed emergence time of the basal genotype outside of
France. At later assumed values of te, our estimates for η were higher,
indicating that later emergence times were compensated for by a
higher transmission rate between infected individuals outside of
France and susceptible individuals within France.

We reconstructed the unobserved state variables for themultiple-
introductions model using SMC simulations parameterized with R0

and η values that were sampled from the parameter spaces shown in
Fig. 8, using the same approach we used for reconstructing state
variables on the mock segregating sites trajectory. These recon-
structed variables are shown in Fig. 9. As expected for anepidemicwith
an R0 > 1, the total number of infected individuals increased expo-
nentially over the time period considered (Fig. 9d–f). In Fig. 9g–i, we
plot the reconstructed cumulative number of recovered individuals
over time. These cumulative trajectories indicate that by mid-March
2020, approximately 0.009% to 2.044% of individuals in France had
recovered from infection from this SARS-CoV-2 lineage. These cumu-
lative predictions can be roughly compared against findings from a
serological study that was conducted over this time period in France37.
Based on a survey of 3221 individuals, this study found that 0.41% of

Fig. 6 | Sequences and parameters used for epidemiological inference based on
SARS-CoV-2 sequences from France. a The number of sequences sampled over
time, calculated using a 4-day time window. b The segregating site trajectory cal-
culated from the binned sequences shown in panel (a). c Estimation of the per-
genome, per-transmissionmutation rate μ. The histogram shows the fraction of 87
analyzed transmissionpairswith consensus sequences that differ fromone another

by the number of mutations shown on the x-axis. The mean number of mutations
per transmission is μ =0.33 (95% CI = 0.22–0.48). Black dots represent the prob-
ability of observing 0, 1, 2, and 3 mutations assuming a Poisson distribution with a
mean of 0.33. Vertical black error bars span the probability of observing 0, 1, 2, and
3 mutations assuming Poisson distributions with mean values of 0.22 and 0.48.

Fig. 7 | Joint estimation of the basic reproduction number R0 and the time of
the indexcase t0 for the France SARS-CoV-2 data.The joint log-likelihood surface
based on the estimated segregating site trajectory for the France data. Each cell
shows the mean log-likelihood value based on 10 SMC simulations. Blank cells
indicate mean log-likelihood values of negative infinity. Gray cells indicate where
log-likelihood values were not evaluated. The red lines denote the set of parameter
values that fall within the 95% confidence interval. A few ‘islands’ of parameter
combinations that fall either outside or inside the 95% CI are apparent and are due
to the variation in the log-likelihood values obtained from the SMC simulations.
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Fig. 8 | Joint estimation of the basic reproduction number R0 and the
transmission-reduction parameter η for the multiple-introductions model
using the France data. The joint log-likelihood surface based on the estimated
segregating site trajectory for the France data is shown under three different basal
genotype emergence times: te = December 24, 2019 (a), January 1, 2020 (b), and
January 8, 2020 (c). Each cell shows themean log-likelihood value basedon 10SMC

simulations. Blank cells indicate mean log-likelihood values of negative infinity.
Gray cells indicatewhere log-likelihood values were not evaluateddue to extended
simulation time. The red lines in each panel denote the set of parameter combi-
nations that fall within the 95% confidence interval. As in Fig. 7, a few ‘islands’ of
parameter combinations are apparent due to the variation in the log-likelihood
values obtained from the SMC simulations.

Fig. 9 | Trajectories of reconstructed state variables for the France data under
the multiple-introductions model. State variables are reconstructed for the
multiple-introductions model with three different values assumed for the emer-
gence time of the basal genotype: te = December 24, 2019 (first column), January 1,
2020 (second column), and January 8, 2020 (third column). a–c Segregating site
trajectory for the France SARS-CoV-2 data (red), alongside reconstructed segre-
gating site trajectories (gray). d–f Reconstructed dynamics of the number of
infected individuals (E1 + E2 + I) over time, shown in percent of France’s population.
g–i Reconstructed dynamics of the cumulative number of recovered individuals
over time, shown in percent of France’s population. Independent estimates of the

fraction of the population that has been infected with SARS-CoV-2 by mid-March
are shown in black. Estimates are from a serological study conducted during the
time window March 9-15, 202037. j–l Reconstructed dynamics of the cumulative
number of infections in France that resulted from contact with infected individuals
outside of France. Reconstructed state variables shown in panels (a–l) were
obtained by running the particle filter using R0 and t0 parameter values randomly
sampled from within the 95% CI region, with a further condition that the log-
likelihood from the run exceeded the 95% CI region log-likelihood cutoff shown in
Fig. 8a–c, respectively.
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individuals (95% confidence interval = 0.05% to 0.88%) had gotten
infected with SARS-CoV-2 by March 9 to 15, 2020 (Fig. 9g–i). Our
estimates fall in line with these independent estimates. Of note, our
estimates should fall on the low side of these independent estimates
because other, smaller clades were also circulating in France during
the time period studied and infections with viruses from these other
clades would also contribute to seropositivity levels. We also empha-
size that this is necessarily a rough comparison because seroconver-
sion does not occur exactly at the point of recovery. It can occur over a
broader range of times, ranging from prior to recovery to many days
following symptom onset38. Finally, in Fig. 9j–l, we plotted the recon-
structed cumulative number of infections that resulted directly from
contact with individuals outside of France. By the first sampled time
window (ending on February 22, 2022), our SMC results indicate that
there were very likely repeated introductions of this lineage into
France, with the majority of sampled particles pointing towards hun-
dreds of introductions of this lineage into France by this time point.

Discussion
Here, we developed a statistical inference approach to estimate epi-
demiological parameters from virus sequence data. Our inference
approach is a “tree-free” approach in that it does not rely on the
reconstructionof viralphylogenies to estimatemodel parameters.One
benefit of using such an approach for parameter estimation of emer-
ging viral pathogens is that, early on in an epidemic, phylogenetic
uncertainty present in time-resolved viral phylogenies is significant,
and tree-based phylodynamic inference approaches would need to
integrate over this uncertainty. This is oftentimes computationally
intensive, especially when many sequences have been sampled. The
computational complexity of our “tree-free” approach, in contrast,
does not scale with the number of sampled sequences. Instead, the
runtime required for parameter inference depends on the number of
genotypes that evolve over the course of the model simulations. This
number in turn is affected by the proposed basic reproduction num-
ber, the proposed time of the index case in the single introduction
model, and the magnitude of the per genome, per transmission
mutation rate μ. A second benefit to our tree-free approach is that it
can estimate the time of the index case (in a single-introduction sce-
nario), whereas tree-based inferencemethods estimate the time of the
most recent common ancestor. This is a benefit when the question of
interest focuses on when a viral lineage emerges and starts to spread.
Instead of viral phylogenies being the data that statistically interface
with the epidemiological models, our approach uses a population
genetic summary statistic of the sequence data, namely the number of
segregating sites present in time-binned sets of viral sequences. Our
inference approach benefits from being plug-and-play in that it can
easily accommodate different epidemiological model structures.

Based on fits to a simulated data set, we have shown that segre-
gating site trajectories can be used to estimate the basic reproduction
number R0 and the timing of the index case t0 in cases where a single
introduction can be assumed. We further fit a multiple-introductions
epidemiological model to a segregating site trajectory that was cal-
culated from SARS-CoV-2 sequence data from France, estimating a
basic reproduction number R0 of approximately 2.3-2.7. These results
are consistent with previous estimates from an epidemiological ana-
lysis and consistent with a serological study conducted in mid-
March 2020.

Our inference approach relies on several assumptions that are
shared by existing phylodynamic inference methods. Most notably, it
relies on an assumption that all mutations are phenotypically neutral.
However, a recent analysis of SARS-CoV-2 sequences has shown evi-
dence for purifying selection, even early on during the pandemic39.
Indeed, within the set of SARS-CoV-2 sequences from France, we
observe 170 nonsynonymous mutations and 138 synonymous muta-
tions (a ratio of 1.23:1). Given the number of nonsynonymous sites

(n = 68,540) and the number of synonymous sites (n = 19,255) in the
SARS-CoV-2 genome, we would expect, under neutrality, a ratio of
3.56:1. This underrepresentation of nonsynonymous genetic variation
points towards purifying selection in our analyzed dataset. A more
recent analysis also raises the possibility of adaptive evolution occur-
ring during early 202040. Incorporating non-neutral genetic variation
into inference approaches such as ours and existing phylodynamic
ones is complicated, although some statistical approaches have star-
ted to tackle this goal9. In the context ofour segregating sites inference
approach, directly incorporating non-neutral evolution will increase
model complexity considerably, and assumptions would need to be
made about the distribution of mutational fitness effects. Rather than
incorporating non-neutral evolution within our approach, we can for
now consider how the occurrence of non-neutral evolution would
impact our parameter estimates. With purifying selection at play, we
would expect to see less genetic variation than in its absence. As such,
the number of segregating sites in any time window would be lower
than it would be under neutrality. Our inference approach, assuming
neutrality, would therefore bias R0 estimates to be low and, in single-
introductionmodels, the timing of the index case t0 to be late. Inmulti-
introduction models, our estimate of η would be biased high.

Our approach also assumes infinite sites and the absence of
homoplasies.While these assumptions are limitingover longer periods
of sequence evolution, our approach is intended to be used for
emerging viral pathogens, sampled over shorter periods of time, when
levels of genetic diversity are still low. As such, these assumptions will
likely not be violated in cases where this approach will come in useful.
We would also like to note that the infinite sites assumption could in
principle be relaxed, but this would make the simulations in the
inference approach substantially more costly. Furthermore, as time
goes on, not only do chances of repeated mutations at sites increase,
but genetic diversity increases. As such, phylogenetic uncertainty will
decrease, such that existing tree-based phylodynamic inference
approaches will become increasingly informative and segregating site
trajectories less informative.

While our inference approach does adopt assumptions of phe-
notypic neutrality and infinite sites, it does not assume a constant
sampling rate or a specific sampling process throughout the time
period over which sequences are collected. As we have shown in
Fig. 1b, sampling effort does impact the segregating sites trajectory:
the greater the sampling effort, the larger the number of segregating
sites. For our inference approach to perform effectively, sampling
effort therefore needs to bematched between the simulations and the
empirical data. This matching of sampling effort is implemented in the
particle filter. However, the number of samples sequenced per time
window is not particularly informative of model parameters (except in
the case of extremely high sampling effort when certain low R0 model
parameterizations cannot appropriately evaluate the expected num-
ber of segregating sites in a time window because the number of
sampled sequences exceed the number of simulated recoveries). The
reason why the number of samples is not particularly informative of
model parameters is because, under our approach, sampling of indi-
viduals does not impact the underlying epidemiological dynamics:
individuals are sampled upon recovery, once they are no longer
infectious. That the number of observed samples is not highly infor-
mative of model parameters we see as a benefit of our approach
because sampling effort and testing rates canchangedramaticallyover
the course of an emerging pandemic or over the early period of an
emerging viral lineage as surveillance efforts ramp up. In contrast,
sampling times of sequences have been shown to be highly informa-
tive of model parameters in the case of birth-death models, with
sampling process misspecification resulting in the possibility of arriv-
ing at biased parameter estimates41.

While the number of sampled sequences is largely uninformative
of model parameters, our approach does have tomake an assumption
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of when individuals are sampled. In our simulated dataset and in our
application to SARS-CoV-2, we assumed that individuals were sampled
as they recovered. This sampling scheme decision was based on our
understanding that the timeof symptomonset often follows peak viral
load formanyemerging viral pathogens42 and an assumption thatmost
testing early on in a pandemic involves individuals who develop
symptoms. It is important to note that if the assumed sampling scheme
is mismatched with the empirical sampling scheme, parameter esti-
matesmay be biased. For example, if individuals were instead sampled
as they transitioned from the exposed class to the infectious class,
rather than upon recovery, and we assumed in our model that indivi-
duals were sampled upon recovery, then our R0 estimates would be
biased high.

Finally, we would like to note that setting the per genome, per
transmissionmutation rate to a constant value does not correspond to
an assumption of a constant molecular clock. A constant molecular
clock requires that the number of substitutions per unit time remains
the same. Our assumption is that the mean number of nucleotide
changes that occur during a transmission event between a donor and a
recipient (at the consensus level) stays constant over time. This would
almost certainly be the case unless the fidelity of the viral polymerase
was evolving over the period considered. Changes in the substitution
rate could come about if the generation interval between transmission
events changes due, for example, to the implementation of non-
pharmaceutical interventions or increased symptom awareness. A
shortening of the generation interval (defined as the time between
infection and onward transmission) would increase the number of
transmission events that occur per unit time and thereby result in an
increase in the substitution rate. In contrast, a lengthening of the
generation interval would result in fewer transmission events occur-
ring per unit time, thereby decreasing the population-level substitu-
tion rate. Changes in the generation interval can emerge from an
underlying epidemiological model, such that our assumption of a
constant per genome, per transmission event mutation rate does not
precludeor conflictwith the observationof changes in the substitution
rate over time.

The analysis we presented here focuses on statistical inference
using sequence data alone. In recent years, there has also been a
growing interest in combining multiple data sources – for example,
sequence data and epidemiological data or serological data - to more
effectively estimate model parameters. The few existing studies that
have incorporated additional data while performing phylodynamic
inference have shown the value in pursuing this goal7,43,44. As a next
step, we aim to extend the segregating sites approach developed here
to incorporate epidemiological data and/or serological data more
explicitly. Straightforward extension is possible due to the state-space
model structure that is at the core of the particle filtering rou-
tine we use.

Our analysis focused on phylodynamic inference based on
sequence data belonging to a single viral lineage, with either a single
index case or multiple introductions from an outside reservoir. Our
approach, however, can be expanded in a straightforward manner to
multiple viral lineages. This is especially useful in cases like SARS-
CoV-2, where many regions have witnessed the introduction of
multiple clades10,45. In this case, a single segregating sites trajectory
could be calculated for each clade, such that multiple segregating
site trajectories could be simultaneously fit to under specified con-
straints such as the basic reproduction number being the same
across all clades. Different clades could also be allowed to differ in
their reproductive numbers, such that questions relating to the
selective advantage of some clades over others could be addressed.
As such, this inference method, designed for emerging pathogens
with low levels of genetic diversity, may continue to be useful for
endemic pathogens to address questions related to the emergence of
new viral lineages.

Methods
Brief overview of inference approach
Mutations occur during viral replication within infected individuals
and these have the potential to be transmitted. During the epidemio-
logical spread of an emerging virus or viral lineage, the virus popula-
tion (distributed across infected individuals) thus accrues mutations
and diversifies genetically. This joint process of viral spread and evo-
lution can be simulated forward in time using compartmental models,
with patterns of epidemiological spread leaving signatures in the
evolutionary trajectory of the virus population. Parameters of these
compartmental models that govern patterns of epidemiological
spread can thus in principle be estimated using viral sequence data.
Here, similar in spirit to existing inference approaches based on
summary statistics46–50, we develop a statistical inference approach
that fits compartmental epidemiological models to time series of a
low-dimensional summary statistic calculated from sequence data.
Specifically, we use trajectories of the number of segregating sites
from samples of the viral population taken over time for statistical
inference. Because we propose the use of our method early on in an
epidemic (or during the early expansion of a viral lineage), we focus
primarily on estimating the basic reproduction number R0 using this
inference approach.

Epidemiological model simulations and calculation of
segregating site trajectories
To simulate mock data of segregating site trajectories, we specify a
compartmental epidemiological model and simulate the model under
demographic stochasticity using Gillespie’s τ-leap algorithm. Here, we
use a susceptible-exposed-infected-recovered (SEIR) model whose
stochastic dynamics are governed by the following equations:

St +Δt = St � nS!E ð1Þ

Et +Δt = Et +nS!E � nE!I ð2Þ

It +Δt = It +nE!I � nI!R ð3Þ

Rt +Δt =Rt +nI!R ð4Þ

where:

nS!E ∼Pois β
St

N
ItΔt

� �
ð5Þ

nE!I ∼PoisðγEEtΔtÞ ð6Þ

nI!R ∼PoisðγI I tΔtÞ ð7Þ

where β is the transmission rate, N is the host population size, γE is the
rate of transitioning from the exposed to the infected class, γI is the
rate of recovering from infection, andΔt is the τ-leap time stepused.R0

is given by β /γI. The epidemiological dynamics of this model can be
simulated from the above equations alone. Additional complexity is
needed to incorporate virus evolution throughout the course of the
simulation. To incorporate virus evolution, we partition exposed
individuals and infected individuals into genotype classes, with
genotype 0 being the reference genotype present at the start of the
simulation. Mutations to the virus occur at the time of transmission,
with the number ofmutations that occur in a single transmission event
given by a Poisson random variable withmean μ, the per-genome, per-
transmission event mutation rate. We assume infinite sites such that
new mutations necessarily result in new genotypes. New mutations
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and new genotypes are both assigned integer indices in order of their
appearance. When new mutations are generated at a transmission
event, the new genotype harbors the same mutation(s) as its parent
genotype plus any newmutations. We use a sparsematrix approach to
store genotypes and their associated mutations to save on memory.

There are three types of events that occur in the SEIR model
simulations: transitions from exposed to infected; transitions from
infected to recovered; and transmission. To simulate transitions from
exposed to infected, during a time step Δt, nE!I individuals are drawn
at random from the set of individuals who are currently reside in the
exposed class. These individuals will transition to the infected class
during this time step, while retaining their current genotype statuses.
To simulate transitions from infected to recovered, during a time step
Δt, nI!R individuals are drawn at random from the set of individuals
who are currently residing in the infected class. These individuals will
transition to the recovered class during this time step. To simulate
transmission, during a time stepΔt, we addnS!E new individuals to the
set of exposed individuals. For each newly exposed individual, we
randomly choose (with replacement) a currently infected individual as
its ‘parent’. If no mutations occur during transmission, then this newly
exposed individual enters the same genotype class as its parent. If one
or more mutations occur during transmission, this newly exposed
individual enters a new genotype class, and the sparse matrix is
extended to document the new genotype and its associatedmutations
(given as integers, without a bitstring or explicit genome structure).

We start the simulationwithone infected individual carrying a viral
genotype that we consider as the reference genotype (genotype 0). To
calculate a time series of segregating sites, we define a time window
length T (T >Δt) of a certain number of days and partition the simula-
tion time course into discrete, non-overlapping time windows. During
simulation, we keep track of the individuals that recover (transition
from I to R) within a time window. For each time window i, we then
sample ni of these individuals at random, where ni is the number of
sequences sampled in a given time window based on the sampling
scheme chosen. Because we have the genotypes of the sampled indi-
viduals from the sparse matrix, we can calculate the number of segre-
gating sites si in any time window i. Since si is the number of
polymorphic sites across the sampled individuals in time window i, it is
simply calculated from the set ofmutations harbored by the sequences
of the sampled individuals. While in our simulations, we sample indi-
viduals as they recover, alternative sampling schemes can instead be
assumed. For example, individuals could be sampled as they transition
from the exposed to the infected class, or while they are in the infected
class. We chose to sample upon recovery based on symptom devel-
opment (and thereby testing) often occurring following peak viral load.

Implementation of the transmission heterogeneity model
We implement transmission heterogeneity in the epidemiological
model by splitting the infected classes into a high-transmission and a
low-transmission class, as has been done elsewhere6,10. For an SEIR
model, themodel extended to incorporate transmission heterogeneity
becomes:

St +Δt = St � nS!E ð8Þ

Et +Δt = Et +nS!E � nE!Ih
� nE!I l ð9Þ

Ih,t +Δt = Ih,t +nE!Ih
� nIh!R ð10Þ

I l,t +Δt = I l,t +nE!I l
� nIl!R ð11Þ

Rt +Δt =Rt +nIh!R +nIl!R ð12Þ

where:

nS!E ∼Pois βh
St

N
Ih,tΔt

� �
+Pois βl

St

P
Il,tΔt

� �
ð13Þ

nE!I ∼PoisðγEEtΔtÞ ð14Þ

nE!Ih
∼BinðnE!I ,pH Þ ð15Þ

nE!I l
=nE!I � nE!Ih ð16Þ

nIh!R ∼PoisðγI Ih,tΔtÞ ð17Þ

nIl!R ∼PoisðγI I l,tΔtÞ ð18Þ

The parameter pH quantifies the proportion of exposed indivi-
duals who transition to the high-transmission Ih class. Parameters βh
and βl quantify the transmission rates of the infectious classes that
have high and low transmissibility, respectively.We set the values of βh
and βl based on a given parameterization of overall R0 and the para-
meter pH. To do this, we first define, as in previous work6,10, the relative

transmissibility of infected individuals in the Ih and Il classes as c=
βh
βl
.

We further define a parameter P as the fraction of secondary infections
that result from a fraction pH of the most transmissible infected indi-
viduals. Based on given values of pH and P, we set c, as in previous

work10, to
½1�pH
pH

�
½1P�1� . With c defined in this way, pH can be interpreted as the

proportion of most infectious individuals that result in P of secondary
infections. We set P to 0.80, to make pH easily interpretable relative to
the “20/80” rule in disease ecology22. Recognizing that

R0 =
pHβh + ð1�pH Þβl

γI
in this model, we can then solve for βl:

R0γI
pHc+ ð1�pH Þ, and

set βh = cβl : Note that the interpretation of pH in the context of the
disease ecology rule is an approximation since this calculation does
not take into consideration variation in individual R0 that results from
differences in thedurationof infectionor variation in individualR0 that
results fromdifferences in the number of secondary infections that are
due to stochastic effects.

Epidemiological inference using time series of segregating sites
Our inference approach relies on particle filtering, also known as
Sequential Monte Carlo (SMC), to estimate model parameters and
reconstruct unobserved (latent) state variables. Particle filtering cal-
culates the likelihood of a parameterized model (more precisely, the
probability of observing the time-series data marginalized over the
unobserved state variables) by recurrently updating a set of particles
(Figure S10). In our case, each of these particles holds a state-space
model, which includes a process model component that simulates
underlying epidemiological and evolutionary dynamics and an obser-
vation model that relates these latent state variables to the observed
segregating sites data (Figure S11). The process model includes the
unobserved epidemiological variables (e.g., S, E, I, and R) and the
evolutionary components of the model (viral genotypes and muta-
tions). Fromone observed segregating sites data point to the next one,
the model is simulated using Gillespie’s τ-leap algorithm, as described
in the section above.

At the end of each time window, when the simulation reaches the
next observed segregating sites data point, the observation model is
used to calculate the probability of observing the observed data point
given the underlying process model. This probability is calculated as
follows. We calculate the expected number of segregating sites from
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the model simulation by performing k ‘grabs’ of sampled individuals,
with each grab consisting of the following steps:

• pick (without replacement) ni individuals from the set of indi-
viduals who recovered during time window i, where ni is the
number of samples present in the empirical dataset in window i.
This step mimics the process of sample collection at the same
effort as in the observed data. We control for sampling effort
because the extent of sampling impacts the number of
segregating sites.

• calculate the simulated number of segregating sites sisim, based
on the genotypes of the sampled ni individuals.

Between grabs, the replacement of previously sampled indivi-
duals occurs. We then calculate the mean number of segregating sites
for window i by taking the average of all k sisim values. Finally, we
calculate the probability of observing si segregating sites in window i,
given the model-simulated mean number of segregating sites, using a
Poisson probability mass function parameterized with the mean sisim

value and evaluated at si. As a special case in the calculation of this
probability, if the number of individuals who recovered during a given
time window i is less than the number that needs to be sampled (ni),
then the particle’s probability of observing the number of segregating
sites si is set to 0. The calculated probabilities serve as the weights for
the particles.

Particle weights obtained at the end of each window are used 1)
to resample particles for the next time window according to their
assigned weights and 2) to calculate the likelihood of a para-
meterized model. In the particle filtering algorithm, the likelihood is
obtained by averaging particle weights within each window and then
multiplying these average particle weights across all time windows
with observations. For time windows without observations (ni = 0),
particle weights are assigned a value of 0 if the virus has died out
stochastically and 1 if the virus continues to persist in the population.
These weights are used for resampling, but do not contribute to the
calculation of the likelihood. We adopt this approach to filter out
particles during early time windows that have undergone stochastic
extinction.

Latent state variables are reconstructed by randomly sampling a
particle at the end of an SMC simulation and plotting the values of its
simulated latent state variables over time. All of our SMC simulations
were performed with 200 particles and k = 50 grabs. Note that the
complexity of this inference method is largely independent of the
number of input sequences. This stands in contrast to phylodynamic
inference approaches that frequently down-sample sequences to
reduce runtime.

Converting simulated sequences into nucleotide sequences for
the performance comparison against PhyDyn
Simulated sparsematrices were converted to nucleotide alignments
by first generating a reference sequence with the same length as the
maximum number of mutations in the sparse matrix and choosing
an A, C, G, or T nucleotide at each site with equal probability. A
mutated sequence was generated for each genotype represented in
the sparse matrix by replacing the reference allele at that position
with another nucleotide chosen with equal probability. The final
FASTA alignment was generated by identifying the simulated
sequence associated with each sampled individual. Generation of
the simulated FASTA file was done using Python v3.9.4 with
Numpy v1.19.4.

The simulated FASTA alignment was used to generate a BEAST2
XMLfile froma templateXMLwhichwasgenerated inpartusingBeauti
v2.6.6. This template used a JC69 nucleotide substitution model with
no invariant sites. We assumed an uncorrelated log-normally dis-
tributed relaxed clock with a uniform [0.0, 1E-2] prior on themean and
a uniform [0.0,2.0] prior on the standard deviation.

A single-deme structured coalescent prior as defined by the fol-
lowing equations was implemented using PhyDyn v1.3.8:

dE
dt

=
βIS
N

� γEE ð19Þ

dI
dt

= γEE � γI I ð20Þ

dR
dt

= γI I ð21Þ

where β =R0γI . A population size of 105 with a single initially infected
individual was used. We assume infected individuals remain exposed
for an average of 2 days (1/γE) and infectious (1/γI) for an average of
3 days. R0 was estimated using a uniform [1.0, 10.0] prior. All sampled
sequences were assigned to the infected (“I”) class.

Sampled parameters and trees were logged every 1000 states and
all MCMC chains were run for at least 209M (Fig. 3b), 64 million
(Fig. 5c), 150 million (Figure S8c) iterations. The first 10% of MCMC
chains were discarded as burn-in and the ESS values of all parameters
were >200, as identified by Tracer v1.7.1 (10.1093/sysbio/syy032).

Epidemiological model structure and parameterization used in
the SARS-CoV-2 analysis
The process model we use in our application to SARS-CoV-2 sequence
data from France is based on a previously published epidemiological
model31. We base our process model on this published model to allow
for a direct comparison of inferred R0 values between our sequence-
based analysis and their analysis that focuses on SARS-CoV-2 spread in
France over a similar time period. Their analysiswas based on fitting an
epidemiological model to a combination of case, hospitalization, and
death data. Their model structure, once implemented using Gillespie’s
τ-leap algorithm, is given by:

St +Δt = St � nS!E1 ð22Þ

E1,t +Δt = E1,t +nS!E1 � nE1!E2 ð23Þ

E2,t +Δt = E2,t +nE1!E2 � nE2!I ð24Þ

It +Δt = It +nE2!I � nI!R ð25Þ

Rt +Δt =Rt +nI!R ð26Þ

where:

nS!E1 ∼Pois β
St

N
ItΔt

� �
+Pois β

St

N
E2,tΔt

� �
ð27Þ

nE1!E2 ∼PoisðγE1E1,tΔtÞ ð28Þ

nE2!I ∼PoisðγE2E2,tΔtÞ ð29Þ

nI!R ∼PoisðγI I tΔtÞ ð30Þ
The parameters are the transmission rate β, the rate of transi-

tioning from the E1 class to the E2 class γE1, the rate of transitioning
from the E2 class to the I class γE2, and the rate of transition from the I
class to the R class γI . The average duration of time spent in the E1 class
given by 1=γE1 = 4 days, the average duration of time spent in the E2
class given by 1=γE2 = 1 day, and the average duration of time spent in
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the infected class given by 1=γI = 3 days. Their model assumes that the
transmission efficiency β of exposed class 2 (E2) and that of the
infected class I are the same; their model considers E2 and I as distinct
classes to interface with the case data, where symptoms are assumed
to not appear before an individual has transitioned to class I. We
maintain themodel structurewith E1, E2, and I rather than reducing it to
a model structure with just a single E and a single I class to keep the
same overall distribution of infection times as in their model.

Because SARS-CoV-2 dynamics are characterized by substantial
levels of transmission heterogeneity10,23,51 and we have shown in Fig. 1
that transmission heterogeneity impacts segregating site trajectories,
we expanded the compartmental epidemiological model for SARS-
CoV-2 described above to include transmission heterogeneity in a
manner similar to the one we used in Fig. 1. Based specifically on the
analysis by Paireau and colleagues52, we set pH to 0.10, such that 10% of
infections are responsible for 80% of secondary infections. Analogous
to the approach we undertook for the simulated data, we jointly esti-
mated R0 and t0 using the segregating site trajectory shown in Fig. 6b.

Based on phylogenetic analyses that have indicated that early
introductions of SARS-CoV-2 into focal regions likely resulted from
multiple introductions rather than a single one, we considered a
modified version of the epidemiological model that would allow for
multiple introductions. The modification relied on the incorporation
of infections within France that resulted from direct contact with
infected individuals outside of France, termed the viral “reservoir”.
Similar to the approach adopted by some existing phylodynamic
analyses12, the viral populationdynamics in this reservoir are simplified
to exponential growth. This infected population from outside of
France acts as another source of infection for susceptible individuals
within France, allowing for multiple introductions of SARS-CoV-2 into
France.

As in the focal region, new genotypes are expected to emerge in
the outside reservoir. As we assume an infinite sites model, the geno-
types that emerge in the outside reservoir and in the focal region will
not overlap except in the basal genotype that is first introduced to the
focal region. For this reason, and because the basal genotype is
expected to be considerably more common than any of the viral
genotypes that stem from it, we consider only the repeated intro-
duction of the basal genotype into France. Starting at the time of
emergence of the basal genotype in the outside reservoir (te), we let
the number of individuals infected with this basal genotype Yt grow
exponentially:

Yt = e
;rðt�teÞ ð31Þ

where r is the intrinsic growth rate of the basal genotype. Based on
empirical estimates53,54, we set the intrinsic growth rate to 0.22 day−1.
To set te, we first identified the genotype sampled in France that is
genetically closest to the reference strain Wuhan/Hu-1 (MN908947.3).
This basal genotype differs fromWuhan/Hu-1 by 4 nucleotides: C241T,
C3037T, C14408T, and A23403G. Using GISAID data, we then identi-
fied sequences with collection locations outside of France that carried
all four of thesemutations that define the basal genotype. The earliest
of these sequences including the four basal genotype-defining
mutations was collected on January 25, 2020, in Australia, suggesting
that the basal genotype had been circulating prior to January 25, 2020.
Considering the potential delay between emergence and the time of
first detection, we considered three distinct te values: December 24th,
2019, January 1st, 2020, and January 8th, 2020.

Individuals infected in this outside reservoir can transmit their
infection to susceptible individuals within France. The rate at which
they transmit the infection is reduced relative to the rate at which
infected individuals within France transmit the infection to susceptible
individuals within France. We let the factor by which transmission is
reduced be given by the factor η. During a τ-leap timestep, the number

of individualswithin Francewhobecome infected fromcontactwith an
infected individual outside of France is therefore given by:

nO
S!E1 ∼Pois βη

St

N
YtΔt

� �
ð32Þ

Aswe are considering only the transmission of the basal genotype
from infected individuals in the outside reservoir to susceptible indi-
viduals in France, all of these newly infected individuals will carry the
basal genotype unless mutation occurs during the transmission pro-
cess. Our simplifying assumption that only the basal genotype can be
introduced into France from the outside reservoir ignores the possi-
bility that genotypes that are derived from the basal genotype enter
France from the outside reservoir. Strictly speaking, we think this
assumption is unlikely to bemet. However, at very early time points in
France’s epidemic,mostof the genotypes outside of France should still
be the basal genotype, and only at later time points should the fre-
quencies of derived genotypes increase outside of France. Introduc-
tion of these derived genotypes at these later time points could result
in the establishment of viral sublineages in France. However, because
autochthonous infections would be high at this point, these viral
sublineages would very likely go unsampled. As such, we do not think
that our assumption of only the basal genotype being introduced into
France would have a dramatic effect on our results. We can consider,
however, the effects that violation of this assumption would have on
our parameter estimates: if derived genotypes were introduced into
France and sampled (or their descendants sampled), then the number
of segregating sites that would have evolved within France would be
lower than we are currently taking it to be. As such, our current esti-
mate of R0 would be biased high.

Estimation of the per genome, per transmission event
mutation rate
Weset the per-genome, per-transmissionmutation rate parameterμ to
0.33. This is based on the fit of a Poisson distribution to the number of
de novo substitutions that were observed in 87 transmission pairs of
SARS-CoV-2 from four studies32–35. Accession numbers for 78/87 of
these transmission pairs are available in Table S1. Accession numbers
for the remaining pairswere providedby the corresponding authors of
the relevant publication34. Sequence data were aligned to Wuhan/Hu-1
(MN908947.3)55 using MAFFT v.7.46456. Insertions relative to Wuhan/
Hu-1 were removed and the first 55 and last 100 nucleotides of the
genome were masked. De novo substitutions for each pair were
identified in Python v.3.9.4 (http://www.python.org) using NumPy
v.1.19.457. Ambiguous nucleotides were permissively included in the
identification of de novo substitutions (e.g., an R nucleotide was
assumed to match both an A and a G). The mean number of substitu-
tions between transmission pairs is the maximum likelihood estimate
for the rate parameter of the Poisson distribution. The 95% confidence
interval was calculated using the exact method using SciPy v.1.5.458.

The value for μ = 0.33 is consistent with population-level sub-
stitution rate estimates for SARS-CoV-2, which range from 7.9 ×10−4 to
1.1 ×10−3 substitutions per site per year28,59. With a genome length of
SARS-CoV-2 of approximately 30,000 nucleotides and a generation
interval of approximately 4.5 days60, these population-level substitu-
tion rates would correspond to per genome, per transmission muta-
tion rates of between 0.29 and 0.41, respectively.

Estimation of segregating site trajectories for the France data
We downloaded all complete and high-coverage SARS-CoV-2 sequen-
ces with complete sampling dates sampled through March 17th, 2020
(https://doi.org/10.55876/gis8.230123mt) in France and uploaded
through April 29th, 2021 from GISAID61. Sequences were aligned to
Wuhan/Hu-1 using MAFFT v.7.464. Insertions relative to Wuhan/Hu-1
were removed. Any sequences with fewer than 28000A, C, T, or G
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characters were removed. Following this filtering protocol, our dataset
included 479 sequences. We masked the first 55 and last 100 nucleo-
tides in the genomeaswell as positionsmarked as “highly homoplasic”
in early SARS-CoV-2 sequencing data (https://github.com/W-L/
ProblematicSites_SARS-CoV2/blob/master/archived_vcf/problematic_
sites_sarsCov2.2020-05-27.vcf). Pairwise SNP distances were calcu-
lated in a manner that accounted for IUPAC ambiguous nucleotides in
Python using NumPy. To subset these data to a single clade circulating
within France, we identified the connected components of this pair-
wise distance matrix with a cutoff of 1 SNP in Python using SciPy and
identified the shared SNPs relative to Wuhan/Hu-1 between all
sequences in each connected component. The largest connected
component contained 308 sequences which shared the substitutions
C241T, C3037T, C14408T, and A23403G. Our final dataset included
these 308 as well as 124 sequences from connected components that
shared these four substitutions relative to Wuhan/Hu-1. We included
connected components in which all sequences had an N at any of the
four clade-defining sites of the largest connected component. Two
sequenceswere excluded as they differed fromall other sequences in
the dataset by > 7 SNPs. This dataset includes 112 of the 186 sequen-
ces analyzed in Danesh et al.11. Sequences were binned into four-day
windows, aligned such that the last window ended on the latest
sampling date. The number of segregating sites in each window was
calculated in Python using NumPy. Ambiguous nucleotides were
permissively considered in the calculation of segregating sites, e.g.,
an N nucleotide was assumed to match all four nucleotides, whereas
an R nucleotidewas assumed tomatch only A andG nucleotides. This
matching assumption results in a lower bound estimate for the
number of segregating sites in any time window. If we instead count
an N nucleotide at a site as a mutation, the number of segregating
sites in each time window is much larger (Figure S12a). However, it is
unlikely that an N nucleotide indicates a mutation; it is much more
likely that anN indicates an inability to call a nucleotide based on low
read depth or poor quality scores at a site. If we count N nucleotides
as matching observed variation but count other ambiguous nucleo-
tides (e.g., R) as mutations, the segregating site trajectory is barely
affected (Figure S12b). This is because there are very few non-N
ambiguous nucleotides in the dataset. As such, our parameter esti-
mates on the France dataset are unlikely to be impacted by our
assumption of ambiguous nucleotides matching observed genetic
variation at their respective sites.

Phylogenetic analysis of SARS-CoV-2 sequences from France
To confirm that the subset of sequences from France obtained from
finding connected components formed an evolutionary lineage/
clade, we first combined the 479 sequences sampled from France
with 100 randomly-selected complete, high-coverage sequences
sampled from outside France through March 17th, 2020 and uploa-
ded to GISAID through April 29th, 2021. These sequences were
aligned to Wuhan/Hu-1 using MAFFT, insertions were removed, and
the sites described above were masked. This alignment was con-
catenated with the aligned sequences from France. IQ-Tree v. 2.0.762

was used to construct a maximum likelihood phylogeny, and
ModelFinder63 was used to find the best fit nucleotide substitution
model (GTR + F + I). Small branches were collapsed. TreeTime v.
0.8.064 was used to remove any sequences with more than four
interquartile distances from the expected evolutionary rate, rooting
at Wuhan/Hu-1. Treetime was also used to generate a time-aligned
phylogeny assuming a clock rate of 1 ×10−3 substitutions per site per
year with a standard deviation of 5 ×10−4 substitutions per site per
year, a skyline coalescent model, marginal time reconstruction,
accounting for covariation, and resolving polytomies. Maximum
likelihood phylogenies were visualized in Python using Matplotlib v.
3.3.365 and Baltic (https://github.com/evogytis/baltic).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The simulated data generated in this study are available at https://
github.com/koellelab/segregating-sites. The transmission pair data
used to estimate the per-genome, per-transmission event mutation
rate is provided in Table S1. The SARS-CoV-2 viral genome sequences
used in the France analysis are available fromGISAID (Supplementary
information; https://doi.org/10.55876/gis8.230123mt). Due to the
size of datasets, source data (excluding genome sequences down-
loaded from GISAID) are available at https://github.com/koellelab/
segregating-sites.

Code availability
Python code used for generation of all figures is available on GitHub:
https://github.com/koellelab/segregating-sites.
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